СНиП 2.05.03-84 (с изм. 1 1991), часть 6
- часть 1
- часть 2
- часть 3
- часть 4
- часть 5
- часть 6
- часть 7
- часть 8
- часть 9
- часть 10
- часть 11
- часть 12
- часть 13
- часть 14
- часть 15
- часть 16
- часть 17
- часть 18
- часть 19
- часть 20
- часть 21
- часть 22
- часть 23
- часть 24
- часть 25
- часть 26
- часть 27
- часть 28
- часть 29
3.3. Расчеты по трещиностойкости совместно с конструктивными и другими требованиями (к водоотводу и гидроизоляции конструкций, морозостойкости и водонепроницаемости бетона) должны обеспечивать коррозионную стойкость железобетонных мостов и труб, а также препятствовать возникновению повреждений в них при совместном воздействии силовых факторов и неблагоприятных влияний внешней среды.
Элементы железобетонных конструкций в зависимости от назначения, условий работы и применяемой арматуры должны удовлетворять соответствующим категориям требований по трещиностойкости, которые предусматривают различную вероятность образования (появления) трещин и предельные расчетные значения ширины их раскрытия (см. п. 3.95*).
3.4. Усилия в сечениях элементов статически неопределимых конструкций от нагрузок и воздействий при расчетах по предельным состояниям первой и второй групп следует, как правило, определять с учетом неупругих деформаций бетона и арматуры и наличия трещин.
В конструкциях, методика расчета которых с учетом неупругих свойств бетона не разработана, а также для промежуточных стадий расчета с учетом неупругих свойств бетона усилия в сечениях элементов допускается определять в предположении их линейной упругости..
3.5. Если в процессе изготовления или монтажа конструкции изменяются расчетные схемы или геометрические характеристики сечений, то усилия, напряжения и деформации в конструкции необходимо определять суммированием их для всех предшествующих стадий работы. При этом, как правило, следует учитывать изменение усилий во времени из-за усадки и ползучести бетона и релаксации напряжений в напрягаемой арматуре.
3.6*. В конструкциях с ненапрягаемой арматурой напряжения в бетоне и арматуре следует определять по правилам расчета упругих материалов без учета работы бетона растянутой зоны (см. пп. 3.48*, 3.94* и 3.100*).
3.7*. В предварительно напряженных конструкциях напряжения в бетоне и арматуре в сечениях, нормальных к продольной оси элемента, следует определять по правилам расчета упругих материалов, рассматривая сечение как сплошное. Если бетон омоноличивания напрягаемой арматуры, расположенной в открытых каналах, не имеет сцепления (см. п. 3.170) с бетоном основной конструкции, то следует считать, что и напрягаемая арматура, расположенная в канале, не имеет сцепления с бетоном конструкции.
При определении ширины раскрытия трещин в элементах предварительно напряженных конструкций (в том числе и со смешанным армированием) напряжения в арматуре следует определять без учета работы растянутой зоны бетона. Допускается усилия растянутой зоны бетона полностью передавать на арматуру.
Характеристики приведенного сечения во всех случаях необходимо определять с учетом имеющейся в сечении напрягаемой и ненапрягаемой арматуры с учетом п. 3.48*.
Если элементы конструкции выполнены из бетона разных классов, то общую рабочую площадь сечения следует определять с учетом соответствующих им модулей упругости.
В конструкциях, напрягаемых на бетон, на стадии его обжатия в рабочей площади бетона не учитывают площадь закрытых и открытых каналов. При расчете этих конструкций на стадии эксплуатации допускается в расчетной площади сечения бетона учитывать площадь сечения заинъецированных закрытых каналов. Бетон омоноличивания открытых каналов допускается учитывать при условии выполнения требований по п. 3.104* специальных технологических мероприятий в соответствии с п. 3.170 и установки в бетоне омоноличивания ненапрягаемой арматуры. При этом ширина раскрытия трещин в бетоне омоноличивания не должна превышать размеров, принятых для элементов, проектируемых по категории требований по трещиностойкости 3в.
3.8*. В составных по длине (высоте) конструкциях следует производить проверки прочности и трещиностойкости в сечениях, совпадающих со стыками или пересекающих зону стыков.
Стыки должны обеспечивать передачу расчетных усилий без появления повреждений в бетоне омоноличивания и на торцах стыкуемых элементов (блоков).
Клей в стыках предназначается для герметизации стыков и равномерной передачи сжимающих усилий.
3.9*. Стенки тавровых балок железнодорожных пролетных строений необходимо рассчитывать с учетом возможного на мосту поперечного смещения пути, принимаемого в размере не менее 10 см.
Расчет стенок балок пролетных строений мостов по образованию трещин рекомендуется производить с учетом кручения и изгиба стенок (из их плоскости).
3.10*. Предварительное напряжение арматуры характеризуют значения начального (контролируемого) усилия с учетом п. 3.86, прикладываемого к концам напрягаемой арматуры через натяжные устройства, и установившегося усилия, равного контролируемому за вычетом потерь, произошедших к рассматриваемому моменту времени. При этом напряжения в арматуре, соответствующие контролируемому усилию, не должны превышать расчетных сопротивлений, указанных в табл. 31*, с учетом коэффициентов условий работы а соответствии с п. 3.43*.
Для напрягаемых арматурных элементов в проектной документации должны указываться значения контролируемых усилий и соответствующих им удлинений (вытяжек) арматуры с учетом поз. 4 табл. 1* обязательного приложения 11*.
Значения удлинений арматуры D р в общем случае определяются по формуле
, (38)*
где s р — напряжения, отвечающие контролируемому усилию и назначаемые с учетом требований п. 3.14;
Ер — модуль упругости напрягаемой арматуры:
l — расчетная длина арматурного элемента (расстояние от натяжного анкера до точки арматурного элемента с нулевым перемещением).
Остальные обозначения приведены в табл. 1 и 2* обязательного приложения 11*.
При определении расчетного воздействия, создаваемого усилием напрягаемой арматуры, коэффициенты надежности по нагрузке следует принимать равными:
а) при наличии сцепления арматуры с бетоном:
для целых по длине элементов = 1;
" составных " по п. 3.86*;
б) при отсутствии сцепления арматуры с бетоном (см. п. 3.65*) = 1±0,1.
3.11. При расчете предварительно напряженных элементов место передачи на бетон сосредоточенных усилий с напрягаемой арматуры следует принимать в конструкциях:
с внешними (концевыми) и внутренними (каркасно-стержневыми) анкерами — в месте опирания или закрепления анкеров;
с арматурой, не имеющей анкеров (с заанкериванием посредством сцепления арматуры с бетоном), — на расстоянии, равном 2/3 длины зоны передачи напряжений.
Длину зоны передачи на бетон усилий с напрягаемой стержневой арматуры периодического профиля следует принимать при передаче усилия:
плавной — 20d (d— диаметр стержня);
мгновенной посредством обрезки стержней (допускаемой при диаметрах стержней не более 18 мм) — 25d.
Для элементов конструкций, предназначенных для эксплуатации в районах со средней температурой наружного воздуха наиболее холодной пятидневки ниже минус 40 °С, длину зоны передачи усилий на бетон следует увеличивать на 5d.
Длину зоны передачи на бетон усилий с напрягаемых арматурных канатов класса К-7 при отсутствии анкеров следует принимать в размерах, указанных в табл. 19; для элементов конструкций, предназначенных для эксплуатации в районах со средней температурой наружного воздуха наиболее холодной пятидневки ниже минус 40 °С, при арматурных канатах класса К-7 длину зоны следует принимать более значений, указанных в табл. 19:
на 27 см — при диаметре канатов 9 мм;
на 30 см - то же 12 мм;
на 38 см - « 15 мм.
Таблица 19
Диаметр арматурных |
Длина зоны передачи на бетон усилий l гр , см, при передаточной прочности бетона, отвечающей бетону классов по прочности на сжатие |
|||||||
канатов класса К-7, мм |
В22,5 |
В25 |
В27,5 |
В30 |
В35 |
В40 |
В45 |
В50 и более |
9 |
88 |
85 |
83 |
80 |
75 |
70 |
65 |
60 |
12 |
98 |
95 |
93 |
90 |
87 |
85 |
75 |
70 |
15 |
115 |
110 |
105 |
100 |
95 |
90 |
85 |
80 |
П р и м е ч а н и е. При мгновенной передаче на бетон усилия обжатия (посредством обрезки канатов) начало зоны передачи усилий следует принимать на расстоянии равном 0,25 l гр от торца элемента.
3.12*. Армирование зоны передачи на бетон сосредоточенных усилий, в том числе с напрягаемых арматурных элементов, должно выполняться с учетом напряженно-деформированного состояния этой зоны, определяемого методами теории упругости или другими обоснованными способами расчета на местные напряжения.
3.13. Влияние усадки и ползучести бетона следует учитывать при определении:
потерь предварительных напряжений в арматуре;
снижения обжатия бетона в предварительно напряженных конструкциях:
изменений усилий в конструкциях с искусственным регулированием напряжений;
перемещений (деформаций) конструкций от постоянных нагрузок и воздействий;
усилий в статически неопределимых конструкциях;
усилий в сборно-монолитных конструкциях.
Перемещения (деформации) конструкций от временных нагрузок допускается определять без учета усадки и ползучести бетона.
При расчете двухосно- и трехосно-обжатых элементов потери напряжений в напрягаемой арматуре и снижение обжатия бетона вследствие его усадки и ползучести допускается определять отдельно по каждому направлению действия усилий.
3.14. Напряжения в элементах предварительно напряженных конструкций следует определять по контролируемому усилию за вычетом:
первых потерь — на стадии обжатия бетона;
первых и вторых потерь — на стадии эксплуатации.
К первым потерям следует относить:
а) в конструкциях с натяжением арматуры на упоры — потери вследствие деформации анкеров, трения арматуры об огибающие приспособления, релаксации напряжений в арматуре (в размере 50 % полных), температурного перепада, быстронатекающей ползучести, а также от деформации форм (при натяжении арматуры на формы):
б) в конструкциях с натяжением арматуры на бетон — потери вследствие деформации анкеров, трения арматуры о стенки закрытых и открытых каналов, релаксации напряжений в арматуре (в размере 50 % полных).
Ко вторым потерям следует относить:
а) в конструкциях с натяжением арматуры на упоры — потери вследствие усадки и ползучести бетона, релаксации напряжений в арматуре (в размере 50 % полных):
б) в конструкциях с натяжением арматуры на бетон — потери вследствие усадки и ползучести бетона, релаксации напряжений в арматуре (в размере 50 % полных), смятия под витками спиральной или кольцевой арматуры, навиваемой на бетон, деформации стыков между блоками в составных по длине конструкциях.
Значения отдельных из перечисленных потерь следует определять по обязательному приложению 11* с учетом п. 3.15.
Допускается принимать, что вторые потери от релаксации напряжений в арматуре (в размере 50 % полных) происходят равномерно и полностью завершаются в течение одного месяца после обжатия бетона.
При проектировании суммарное значение первых и вторых потерь не должно приниматься менее 98 МПа (1000 кгс/см2 ).
3.15. При определении потерь предварительного напряжения в арматуре от усадки и ползучести бетона необходимо руководствоваться следующими указаниями:
а) изменение во времени потерь Ds р (t) от усадки и ползучести бетона допускается определять по формуле
, (39)
где Ds р (t ®¥ ) - конечные (предельные) значения потерь в арматуре от усадки и ползучести бетона, определяемые по обязательным приложениям 11* или 13*;
t - время, отсчитываемое при определении потерь от ползучести — со дня обжатия бетона, от усадки — со дня окончания бетонирования, сут;
e = 2,718 - основание натуральных логарифмов;
б) для конструкций, предназначенных для эксплуатации при влажности воздуха окружающей среды ниже 40 %, потери от усадки и ползучее™ бетона следует увеличивать на 25 %, за исключением конструкций, предназначенных для эксплуатации 8 климатическом подрайоне IVA согласно СНиП 2.01.01-82 и не защищенных от солнечной радиации, для которых указанные потери увеличиваются на 50 %;
в) допускается использовать более точные методы для определения потерь и перераспределения усилий от усадки и ползучести бетона с учетом предельных удельных значений деформаций ползучести и усадки бетона, влияния арматуры, возраста и передаточной прочности бетона, постадийного приложения нагрузки и длительности ее воздействия на каждой стадии, скорости развития деформаций во времени, приведенных размеров поперечных сечений, относительной влажности среды и других факторов. Эти методы должны быть обоснованы в установленном порядке. При этом нормативные деформации ползучести cп и усадки бетона e п для классов бетона, соответствующих его передаточной прочности, следует принимать по табл. 3 обязательного приложения 11*.
3.16*. Расчетную длину l0 сжатых элементов железобетонных решетчатых ферм следует принимать по указаниям, относящимся к определению расчетной длины сжатых элементов стальных решетчатых ферм (см. разд. 4).
Расчетную длину стоек отдельно стоящих рам при жестком соединении стоек с ригелем допускается принимать по табл. 20 в зависимости от соотношения жесткости ригеля В1 = Еb l1 и стоек В2 = Еb l2 .
Таблица 20
Отношение пролета |
Расчетная длина стойки l 0 при отношении жесткости В1 /В2 |
||
стойки Н |
0,5 |
1 |
5 |
0,2 |
1,1 Н |
Н |
Н |
1 |
1,3 Н |
1,15 Н |
Н |
3 |
1,5 Н |
1,4 Н |
1,1 Н |
П р и м е ч а н и е. При промежуточных значениях отношений L/H и B 1 /B 2 расчетную длину l0 допускается определять по интерполяции.
Расчетную длину свай (свай-оболочек, свай-столбов), в том числе в элементах опор эстакадного типа, следует принимать с учетом деформативности грунта и сопротивляемости перемещениям фундамента и верха опоры.
При расчете частей или элементов опор на продольный изгиб с использованием методов строительной механики, касающихся определения расчетной (свободной) длины сжатых стержней, допускается учитывать упругое защемление (упругую податливость) концов рассматриваемых элементов вследствие деформативности грунта и наличия в подвижных опорных частях сил трения. Если такие расчеты не производятся, то при применении подвижных опорных частей каткового и секторного типа, а также на фторопластовых прокладках взаимную связанность верха опор учитывать не следует.
В сжатых железобетонных элементах минимальная площадь поперечного сечения продольной арматуры, % к полной площади расчетного сечения бетона, должна быть не менее:
0,20 — в элементах с гибкостью l0 /i £ 17;
0,60 — « « l0 /i ³ 104;
для промежуточных значений гибкости — по интерполяции (l0 —расчетная длина элемента;
— радиус инерции поперечного сечения элемента, где Jb — момент инерции бетонного сечения; Аb — площадь бетонного сечения). Если требования по величине минимального армирования не удовлетворяются, то элементы конструкции следует рассчитывать как бетонные.
Гибкость сжатых железобетонных элементов в любом направлении в стадии эксплуатации сооружения не должна быть свыше 120, а на стадии монтажа — 150.
Гибкость l0 /ief элементов с косвенным армированием не должна превышать при сетках — 55, при спирали — 35, где ief — радиус инерции части бетонного сечения (ограниченной осями крайних стержней сетки или спиралью).
3.17. Звенья прямоугольных железобетонных труб следует рассчитывать как рамы замкнутого контура с дополнительной проверкой их стенок по схеме с жестко заделанными стойками.
Звенья круглых железобетонных труб допускается рассчитывать только на изгибающие моменты (без учета продольных и поперечных сил), определяемые по обязательному приложению 12.
МАТЕРИАЛЫ ДЛЯ БЕТОННЫХ
И ЖЕЛЕЗОБЕТОННЫХ
КОНСТРУКЦИЙ
Бетон
ОБЩАЯ ХАРАКТЕРИСТИКА
3.18*. В конструкциях мостов и труб следует предусматривать применение конструкционного тяжелого бетона со средней плотностью от 2200 до 2500 кг/м3 включ.*, соответствующего ГОСТ 26633-91.
* Изложенные в разделе нормы и требования относятся к бетону с указанной плотностью, который далее (без указания плотности) именуется «тяжелый бетон».
Применение бетона с другими признаками и плотностью допускается в опытных конструкциях в установленном порядке.
Бетон конструкции по прочности на сжатие характеризуется проектным классом, передаточной и отпускной прочностями. Класс бетона по прочности на сжатие «В» определяется значением гарантированным, обеспеченностью 0,95, прочностью на сжатие, контролируемой на кубах 150х150х150 мм в установленные сроки.
Проектный класс бетона «В» — это прочность бетона конструкции, назначаемая в проекте.
Передаточная прочность бетона Rbp — прочность (соответствующая классу) бетона в момент передачи на него усилия в процессе изготовления и монтажа (см. п. 3.31*).
Отпускная прочность бетона Rbo — прочность (соответствующая классу) бетона в момент отгрузки (замораживания) его со склада завода-изготовителя.
3.19*. Для конструкций мостов и труб следует применять тяжелый бетон классов по прочности на сжатие В20, В22,51 , В25, В27,51 , ВЗО, В35, В40, В45, В50, В55 и В60.
1 Бетон классов В22,5 и В27,5 следует предусматривать при условии, что это приводит к экономии цемента и не снижает других технико-экономических показателей конструкции.
В зависимости от вида конструкций, их армирования и условий работы применяемый бетон должен соответствовать требованиям, приведенным в табл. 21*.
Таблица 21*
Вид конструкций,
армирование |
Бетон класса |
1. Бетонные |
В20 |
2. Железобетонные с напрягаемой арматурой при расположении1 : |
|
а) в зоне переменного уровня воды |
В25 |
б) в надземных частях сооружения |
В22,5 |
в) в подземных частях сооружения, а также во внутренних полостях сборно-монолитных опор |
В20 |
3. Предварительно наряженные железобетонные: |
|
а) без анкеров: |
|
при стержневой арматуре классов: |
|
А-IV, A т-IV |
B25 |
A-V, A т-V |
B30 |
A т-VI |
B35 |
при проволочной арматуре: |
|
из одиночных проволок класса Вр |
В35 |
из одиночных арматурных канатов класса К-7 |
В35 |
б) с анкерами: |
|
при проволочной арматуре: |
|
класса В (при наружных или внутренних анкерах) |
В25 |
из одиночных арматурных канатов класса К-7 |
В25 |
из пучков канатов класса К-7 |
В35 |
при стальных канатах (со свивкой спиральной, двойной и закрытых) |
В35 |
4. Блоки облицовки опор на реках с ледоходом при расположении мостов в районах со средней температурой наружного воздуха наиболее холодной пятидневки, ° С: |
|
минус 40 и выше |
В35 |
ниже минус 40 |
В45 |
1 Характеристика зон указана в сноске1 и в примечаниях к табл. 22*.
Для омоноличивания напрягаемой арматуры, располагаемой в открытых каналах, следует предусматривать бетон класса по прочности на сжатие не ниже В30.
Инъецирование арматурных каналов в предварительно напряженных конструкциях должно производиться раствором прочностью на 28-й день не ниже 29,4 МПа (300 кгс/см2 ).
Для омоноличивания стыков сборных конструкций следует применять бетон класса по прочности на сжатие не ниже принятого для стыкуемых элементов.
3.20*. Марки бетона и раствора по морозостойкости F в зависимости от климатических условий зоны строительства, расположения и вида конструкций следует принимать по табл. 22*.
Таблица 22*
|
Расположение конструкций и их частей |
|||||
Климатические условия, характеризуемые среднемесячной температурой |
в надводной, подземной и надземной незатопляемой зонах1 |
в зоне переменного уровня воды2 |
||||
наиболее |
Вид конструкций |
|||||
холодного месяца |
железобе- |
|
железобе- |
бетонные массивные |
|
|
согласно СНиП |
тонные и тонкостенные бетонные (толщиной менее 0,5 м) |
бетонные массивные |
тонные и тонкостенные бетонные |
кладка тела опор (бетон наружной зоны |
кладка заполнения при блоках облицовки (бетон вну-тренней зоны) |
блоки облицовки |
Умеренные: |
|
|
|
|
|
|
минус 10 и выше |
200 |
100 |
200 |
100 |
100 |
- |
Суровые: |
|
|
|
|
|
|
ниже минус 10 до минус 20 включ. |
200 |
100 |
300 |
200 |
100 |
300 |
Особо суровые: |
|
|
|
|
|
|
ниже минус 20 |
300 |
200 |
300* |
300 |
200 |
400** |
1 К надземным незатопляемым зонам в опорах следует относить части, расположенные на 1 м выше поверхности грунта. Для бетона участков опор, расположенных ниже и достигающих половины глубины промерзания грунта, следует предусматривать требования, указанные для конструкций, находящихся в зоне переменного уровня воды.
2 За верхнюю границу зоны переменного уровня воды следует принимать условный уровень, который на 1 м выше наивысшего уровня ледохода, за нижнюю — уровень на 0,5 м ниже нижней поверхности слоя льда наинизшего ледостава.
* Железобетонные элементы промежуточных опор железнодорожных и совмещенных мостов на постоянных водотоках в районах с особо суровыми климатическими условиями должны иметь марку бетона по морозостойкости F400.
** Бетон блоков облицовки опор больших железнодорожных и совмещенных мостов через реки с ледоходом при толщине льда свыше 1,5 м и расположении моста в районе с особо суровыми климатическими условиями должен иметь марку по морозостойкости F500.
П р и м е ч а н и я: 1. К бетону частей конструкций подводных (на 0,5 м ниже поверхности слоя льда наинизшего ледостава), подземных (ниже половины глубины промерзания), а также находящихся а вечномерзлых грунтах требования по морозостойкости не нормируются. В обсыпных устоях к подземным частям конструкции относятся части тела устоя, расположенные ниже половины глубины промерзания грунта конуса насыпи.
2*. Бетон: всех элементов водопропускных труб, укрепления русел рек и конусов насыпей, берегоукрепительных и регуляционных сооружений (бетон, находящийся в сезоннооттаивающем слое грунта в районах вечной мерзлоты), всех элементов мостового полотна, включая плиты проезжей части автодорожных мостов, а также бетон выравнивающего слоя одежды ездового полотна, выполняющий гидроизолирующие функции, и плиты мостового полотна в железнодорожных пролетных строениях при безбалластной езде, должен отвечать требованиям по морозостойкости, предъявляемым к бетону, находящемуся в зоне переменного уровня воды.
3*. При назначении требований по морозостойкости участков буронабивных свай в зоне переменного уровня воды за нижний уровень этой зоны принимается отметка на 0,5 м ниже нижней поверхности льда.
3.21. Марки по морозостойкости бетона тела опор и блоков облицовки для мостов, расположенных вблизи плотин гидростанций и водохранилищ, должны устанавливаться в каждом отдельном случае на основе анализа конкретных условий эксплуатации и требований, предъявляемых в этих случаях к бетону речных гидротехнических сооружений.
3.22*. В подводных и подземных сооружениях, не подвергающихся электрической и химической коррозии, следует в соответствии со СНиП 2.03.11-85 применять бетон с маркой по водонепроницаемости W4.
Остальные элементы и части конструкций, в том числе бетонируемые стыки железобетонных мостов и труб и защитный слой одежды ездового полотна, должны проектироваться из бетона, имеющего марку по водонепроницаемости не ниже W6.
В районах со средней температурой наружного воздуха наиболее холодной пятидневки ниже минус 40 ° С в железобетонных опорах в зоне переменного уровня воды, в блоках облицовки опор, а также во всех случаях в выравнивающем слое бетона одно- и двухслойной одежды ездового полотна, выполняющем гидроизолирующие функции, должен применяться бетон с маркой по водонепроницаемости не ниже W8.
3.23*. В элементах конструкций, предназначенных для эксплуатации в агрессивных средах, должны приниматься бетон и защитные покрытия, обладающие стойкостью к такому воздействию, в соответствии с требованиями СНиП 2.03.11-85.
РАСЧЕТНЫЕ СОПРОТИВЛЕНИЯ
3.24*. Расчетные сопротивления бетона разных классов при расчете конструкций мостов и труб по предельным состояниям первой и второй групп должны приниматься по табл. 23*.
Таблица 23*
Вид |
Условное |
Расчетное сопротивление,
Мпа ( кгс/см2
), |
||||||||||
противления |
обозначение |
В20 |
В |
В25 |
|
|
В35 |
|
В45 |
В50 |
В55 |
В60 |
При расчетах по предельным состояниям первой группы |
||||||||||||
Сжатие осевое (призменная прочность)
|
R b |
10,5
105 |
11,75
120 |
13,0
135 |
14,3
145 |
15,5
160 |
17,5
180 |
20,0
205 |
22,0
225 |
25,0
255 |
27,5
280 |
30,0
305 |
Растяжение осевое
|
R br |
0 ,85
8,5 |
0,90
9,0 |
0,95
10,0 |
1,05
10,5 |
1,10
11,0 |
1,15
12,0 |
1,15
13,0 |
1,30
13,5 |
1,40
14,0 |
1,45
14,5 |
1,50
15,5 |
При расчетах по предельным состояниям второй группы |
||||||||||||
Сжатие осевое (призменная прочность)
|
R b.ser |
15 ,0
155 |
16,8
170 |
18,5
190 |
20,5
210 |
22,0
225 |
25,5
260 |
29,0
295 |
32,0
325 |
36,0
365 |
39,5
405 |
43,0
440 |
Растяжение осевое
|
R bt.ser |
1 ,40
14,5 |
1,50
15,5 |
1,60
16,5 |
1,70
17,5 |
1,80
18,5 |
1,95
20,0 |
2,10
21,5 |
2,20
22,5 |
2,30
23,5 |
2,40
24,5 |
2,50
25,5 |
Скалывание при изгибе
|
R b.sh |
1 ,95
20,0 |
2,30
23,5 |
2,50
25,5 |
2,75
28,0 |
2,90
29,5 |
3,25
33,0 |
3,60
37,0 |
3,80
39,0 |
4,15
42,5 |
4,45
45,5 |
4,75
48,5 |
Сжатие осевое (призменная прочность) для расчетов по предотвращению образования в конструкциях продольных трещин:
|
|
|
|
|
|
|
|
|
|
|
|
|
при предварительном напряжении и монтаже
|
R b.mc1 |
- |
- |
13 ,7
140 |
15,2
155 |
16,7
170 |
19,6
200 |
23,0
235 |
26,0
265 |
29,9
305 |
32,8
335 |
36,2
370 |
на стадии эксплуатации |
R b.mc2 |
8,8
90 |
10,3
105 |
11,8
120 |
13,2
135 |
14,6
150 |
16,7
170 |
19,6
200 |
22,0
225 |
25,0
255 |
27,5
280 |
30,0
305 |