СНиП 2.05.03-84 (с изм. 1 1991), часть 5

Величину l (пролета или длины загружения) в формулах следует принимать:

а) для основных элементов главных ферм (разрезных балок, арок, рам), а также для продольных и поперечных балок при загружении той части линии влияния, которая определяет их участие в работе главных ферм, — равной длине пролета или длине загружения линии влияния, если эта длина больше величины пролета;

б) для основных элементов главных ферм неразрезных систем — равной сумме длин загружаемых участков линий влияния (вместе с разделяющими из участками);

в) при расчете на местную нагрузку (при загружении той части линии влияния, которая учитывает воздействие местной нагрузки):

продольных балок и продольных ребер ортотропных плит — равной длине их пролета;

поперечных балок и поперечных ребер ортотропных плит — равной суммарной длине продольных балок в примыкающих панелях;

подвесок, стоек и других элементов, работающих только на местную нагрузку, — равной длине загружения линий влияния:

плит балластового корыта (поперек пути) — условно равной нулю;

железобетонных плит железнодорожного проезда, укладываемых по металлическим балкам, при расчете плиты поперек пути — равной ширине плиты, при расчете вдоль пути — равной длине панели продольной балки;

железобетонных плит автодорожного проезда, укладываемых по металлическим балкам, при расчете плит поперек моста — равной расстоянию между балками, на которые опирается плита;

г) при загружении линий влияния, учитывающих одновременно основную и местные нагрузки, — раздельно для каждой из этих нагрузок;

д) для элементов опор всех типов — равной длине загружения линии влияния опорной реакции, определяемой как сумма длин загружаемых участков (вместе с разделяющими их участками);

е) для звеньев труб и подземных пешеходных переходов — равной ширине звена.

П р и м е ч а н и е. В случаях, когда на железных дорогах промышленных предприятий установленная максимальная скорость движения по мосту ограничена (n t < 80 км/ч), расчетную величину динамического коэффициента допускается уменьшать, умножая соответствующую динамическую добавку m на отношение n t /80, при этом динамический коэффициент следует принимать не менее 1,10.

2.23*. Коэффициенты надежности по нагрузке g f к временным нагрузкам и воздействиям, приведенным в пп. 2.11-2.21*, следует принимать равными:

а) для железнодорожных нагрузок СК и e СК — по табл. 13;

Таблица 13


Коэффициент надежности по нагрузке g f
при расчете

Воздействие

конструкций мостов в зависимости от длины загружения l *, м


звеньев


0

50

150 и более

труб

Вертикальное

1,30

1,15

1,10

1,30

Горизонтальное

1,20

1,10

1,10

1,20

Давление грунта от подвижного состава на призме обрушения

1,20 независимо от длины
загружения

-

* Здесь l — длина загружения линии влияния за вычетом длины участков, загруженных порожним составом (при g f = 1); для промежуточных значений следует принимать по интерполяции.

б) для нагрузки от автотранспортных средств АК - по табл. 14;

в) к колесной (НК-80) и гусеничной (НГ-60) нагрузкам и их воздействиям — 1,0;

г) к нагрузкам от подвижного состава метрополитена и трамвая — по формуле

, (28)

но не менее 1,10,

где l — длина загружения, м, принимаемая по табл. 13;

Таблица 14


Нагрузка


Случай применения

Коэффициент

надежности

по нагрузке g f

Тележка

При расчетах элементов проезжей части мостов

1,50


При расчетах всех других элементов мостов

1,50 при l * = 0
1,20 при l ³ 30 м


При определении веса в расчетах на сейсмические воздействия

1,20

Равномерно распределенная

При всех расчетах конструкций мостов и звеньев труб на вертикальные и горизонтальные воздействия

1,20

Одиночная ось

При проверке элементов проезжей части мостов, проектируемых на нагрузку А8

1,20

* Здесь l — длина участка линии влияния одного знака; для промежуточных значений l следует принимать по интерполяции.

д) к распределенным нагрузкам для пешеходных мостов и тротуаров при расчете:

элементов пешеходных мостов и тротуаров (кроме тротуаров на мостах внутрихозяйственных дорог и служебных проходов), а также перил городских мостов — 1,40;

пролетного строения и опор при учете совместно с другими нагрузками — 1,20;

тротуаров на мостах внутрихозяйственных дорог и служебных проходов на мостах дорог всех категорий — 1,10;

е) к распределенным и сосредоточенным горизонтальным нагрузкам на ограждения проезжей части, а также к сосредоточенным давлениям на тротуары и перила — 1,00;

ж) к автомобильным нагрузкам АБ и их воздействиям — в зависимости от удельного веса породы g vb , для перевозки которой строится дорога:

при g vb £ 17,7 кН/мЗ (1,8 тс/м3 ) ............... 1,1

при g vb = 39,2 кН/м3 (4,0 тс/м3 ) ............... 1,4

при промежуточных значениях...........по интерполяции.

ПРОЧИЕ ВРЕМЕННЫЕ НАГРУЗКИ И ВОЗДЕЙСТВИЯ

2.24*. Нормативную величину ветровой нагрузки Wn следует определять как сумму нормативных значений средней Wm и пульсационной Wp составляющих:

Wn = Wm + Wp .

Нормативное значение средней составляющей ветровой нагрузки Wm на высоте z над поверхностью воды или земли определяется по формуле

Wm = Wo kCw ,

где W — нормативное значение ветрового давления, принимаемое по СНиП 2.01.07-85 в зависимости от ветрового района территории РФ, в котором возводится сооружение;

k — коэффициент, учитывающий для открытой местности (типа А) изменение ветрового давления по высоте z, принимаемый по СНиП 2.01.07-85;

Сw  — аэродинамический коэффициент лобового сопротивления конструкций мостов и подвижного состава железных дорог и метрополитена, приведенный в обязательном приложении 9*.

Нормативное значение пульсационной составляющей ветровой нагрузки Wp на высоте z следует определять по указаниям, содержащимся в СНиП 2.01.07-85:

Wp = Wm x L n ,

где x  — коэффициент динамичности;

L  — коэффициент пульсации давления ветра на уровне z;

n  — коэффициент пространственной корреляции пульсации давления для расчетной поверхности сооружения.

При определении пульсационной составляющей ветровой нагрузки применительно к конструкциям мостов допускается руководствоваться следующим:

а) произведение коэффициентов Ln принимать равным:

0,55 — 0,15 l /100, но не менее 0,30,

где l — длина пролета или высота опоры, м;

б) коэффициент динамичности x для балочных разрезных конструкций находить в предположении, что рассматриваемая конструкция в горизонтальной плоскости является динамической системой с одной степенью свободы (с низшей частотой собственных колебаний f1 , Гц) и его величину определять по графику, приведенному в п. 6.7 СНиП 2.01.07-85 в зависимости от указанного там параметра S и логарифмического декремента затухания s = 0,3 — для железобетонных и сталежелезобетонных конструкций и s = 0,15— для стальных конструкций.

Коэффициент динамичности принимается равным 1,2, если:

балочное пролетное строение является неразрезным;

для балочного разрезного пролетного строения имеет место условие fi > fl , где fl , Гц — предельные значения частот собственных колебаний, приведенные в п. 6.8 СНиП 2.01.07-85, при которых в разных ветровых районах допускается не учитывать силы инерции, возникающие при колебаниях по собственной форме.

При расчете конструкций автодорожных и городских мостов воздействие ветра на безрельсовые транспортные средства и трамвай, находящиеся на этих мостах, не учитывается.

Типовые конструкции пролетных строений следует, как правило, проектировать на возможность их применения в V ветровом районе (при расчетной высоте до низа пролетных строений: 20 м — при езде понизу и 15 м — при езде поверху) и предусматривать возможность их усиления при применении в VI и VII ветровых районах.

Нормативную интенсивность полной ветровой поперечной горизонтальной нагрузки при проектировании индивидуальных (нетиповых) конструкций пролетных строений и опор следует принимать не менее 0,59 кПа (60 кгс/м2 ) — при загружении конструкций временной вертикальной нагрузкой и 0,98 кПа (100 кгс/м2 ) — при отсутствии загружения этой нагрузкой.

Горизонтальную поперечную ветровую нагрузку, действующую на отдельные конструкции моста, а также на поезд, находящийся на железнодорожном мосту (мосту метро), следует принимать равной произведению интенсивности ветровой нагрузки на рабочую ветровую поверхность конструкции моста и подвижного состава.

Рабочую ветровую поверхность конструкции моста и подвижного состава следует принимать равной:

для главных ферм сквозных пролетных строений и сквозных опор — площади проекции всех элементов наветренной фермы на плоскость, перпендикулярную направлению ветра, при этом для стальных ферм с треугольной или раскосой решеткой ее допускается принимать в размере 20 % площади, ограниченной контурами фермы;

для проезжей части сквозных пролетных строений — боковой поверхности ее балочной клетки, не закрытой поясом главной фермы;

для пролетных строений со сплошными балками и прогонов деревянных мостов — боковой поверхности наветренной главной балки или коробки и наветренного прогона;

для сплошных опор — площади проекции тела опоры от уровня грунта или воды на плоскость, перпендикулярную направлению ветра;

для железнодорожного подвижного состава (в том числе поездов метрополитена) — площади сплошной полосы высотой 3 м с центром давления на высоте 2 м от головки рельса.

Распределение ветровой нагрузки по длине пролета допускается принимать равномерным.

Нормативную интенсивность ветровой нагрузки, учитываемой при строительстве и монтаже, следует определять исходя из возможного в намеченный период значения средней составляющей ветровой нагрузки в данном районе. В зависимости от характера производимых работ при наличии специального обоснования, предусматривающего соответствующее ограничение времени и продолжительности выполнения отдельных этапов работ, нормативная величина средней составляющей ветровой нагрузки для проверки напряжений (но не устойчивости) может быть уменьшена, но должна быть не ниже 0,226 кПа (23 кгс/м2 ). Для проверки типовых конструкций на стадии строительства и монтажа величину нормативной интенсивности ветровой нагрузки следует принимать по нормам для III ветрового района.

Нормативную горизонтальную продольную ветровую нагрузку для сквозных пролетных строений следует принимать в размере 60 %, для пролетных строений со сплошными балками — 20 %, соответствующей полной нормативной поперечной ветровой нагрузке. Нормативную горизонтальную продольную нагрузку на опоры мостов выше уровня грунта или межени следует принимать равной поперечной ветровой нагрузке.

Продольная ветровая нагрузка на транспортные средства, находящиеся на мосту, не учитывается.

Усилия от ветровых нагрузок в элементах продольных и поперечных связей между фермами пролетных строений следует, как правило, определять посредством пространственных расчетов.

В случаях устройства в сквозных пролетных строениях двух систем продольных связей допускается поперечное давление ветра на фермы распределять на каждую из них, а давление ветра на проезжую часть и подвижной состав передавать полностью на те связи, в плоскости которых расположена езда.

Горизонтальное усилие от продольной ветровой нагрузки, действующей на пролетное строение, следует принимать передающимся на опоры в уровне центра опорных частей — для мостов с балочными пролетными строениями и в уровне оси ригеля рамы — для мостов рамной конструкции. Распределение усилий между опорами следует принимать таким же, как и горизонтального усилия от торможения в соответствии с п. 2.20*.

Для вантовых и висячих мостов следует проводить проверку на аэродинамическую устойчивость и на резонанс колебаний в направлении, перпендикулярном ветровому потоку. При проверке аэродинамической устойчивости должна определяться критическая скорость ветра, при которой вследствие взаимодействия воздушного потока с сооружением возможно появление флаттера (возникновение опасных изгибно-крутильных колебаний балки жесткости). Критическая скорость, отвечающая возникновению флаттера, найденная по результатам аэродинамических испытаний моделей или определенная расчетом, должна быть больше максимальной скорости ветра, возможного в районе расположения моста, не менее чем в 1,5 раза.

2.25. Нормативную ледовую нагрузку от давления льда на опоры мостов следует принимать в виде сил, определяемых согласно обязательному приложению 10*.

2.26. Нормативную нагрузку от навала судов на опоры мостов следует принимать в виде сосредоточенной продольной или поперечной силы и ограничивать в зависимости от класса внутреннего водного пути значениями, указанными в табл. 15.

Таблица 15


Нагрузка от навала судов, кН (тс)

Класс

внутренних

вдоль оси моста со стороны пролета

поперек оси моста со стороны

водных
путей


судоходного


несудоходного


верховой

низовой, при отсутствии течения -
и верховой

I

1570 (160)

780 (80)

1960 (200)

1570 (160)

II

1130 (115)

640 (65)

1420 (145)

1130 (115)

III

1030 (105)

540 (55)

1275 (130)

1030 (105)

IV

880 (90)

490 (50)

1130 (115)

880 (90)

V

390 (40)

245 (25)

490 (50)

390 (40)

VI

245 (25)

147 (15)

295 (30)

245 (25)

VII

147 (15)

98 (10)

245 (25)

147 (15)

Нагрузка от навала судов должна прикладываться к опоре на высоте 2 м от расчетного судоходного уровня, за исключением случаев, когда опора имеет выступы, фиксирующие уровень действия этой нагрузки, и когда при менее высоком уровне нагрузка вызывает более значительные воздействия.

Для опор, защищенных от навала судов, а также для деревянных опор автодорожных мостов на внутренних водных путях VI и VII классов нагрузку от навала судов допускается не учитывать.

Для однорядных железобетонных свайных опор автодорожных мостов через внутренние водные пути VI и VII классов нагрузку вдоль оси моста допускается учитывать в размере 50 %.

2.27*. Нормативное температурное климатическое воздействие следует учитывать при расчете перемещений в мостах всех систем - при определении усилий во внешне статически неопределимых системах, а также при расчете элементов сталежелезобетонных пролетных строений.

Среднюю по сечению нормативную температуру элементов или их частей допускается принимать равной:

для бетонных и железобетонных элементов в холодное время года, а также для металлических конструкций в любое время года — нормативной температуре наружного воздуха;

для бетонных и железобетонных элементов в теплое время года — нормативной температуре наружного воздуха за вычетом величины, численно равной 0,2а, но не более 10 °С, где a — толщина элемента или его части, см, включая одежду ездового полотна автодорожных мостов.

Температуру элементов со сложным поперечным сечением следует определять как средневзвешенную по температуре отдельных элементов (стенок, полок и др.).

Нормативные температуры воздуха в теплое tn,T и холодное tn,X время года следует принимать равными:

а) при разработке типовых проектов, а также проектов для повторного применения на территории страны:

для конструкций, предназначенных для районов с расчетной минимальной температурой воздуха ниже минус 40 ° С,

tn,T = 40 ° C , tn,X = -50 ° C ;

для конструкций, предназначенных для остальных районов,

tn,T = 40 ° C , tn,X = -40 ° C ;

б) в других случаях

tn,T = tVII + T , (29)

где tVII  — средняя температура воздуха самого жаркого месяца, принимаемая по СНиП 2.01.01-82;

Т — постоянная величина для определения температуры воздуха наиболее жарких суток, принимаемая по карте изолиний СНиП 2.01.01-82, ° С.

Нормативная температура tn,X принимается равной расчетной минимальной температуре воздуха в районе строительства в соответствии с п. 1.39.

Влияние солнечной радиации на температуру элементов следует учитывать в виде дополнительного нагрева на 10 °С освещенного солнцем поверхностного слоя толщиной 15 см (включая одежду ездового полотна).

Температуры замыкания конструкций, если они в проекте не оговорены, следует принимать равными:

t з,Т = tn,T - 15 ° C ; t з,X = tn,X + 15 ° C .

Температуру конструкции в момент замыкания допускается определять по формуле

t3 = 0,4 t1 + 0,6 t2 , (30)

где t1  — средняя температура воздуха за предшествующий замыканию период, равный T0 ;

t2  — средняя температура воздуха за предшествующий замыканию период, равный 0,25 T0 ;

T0  — период, ч, численно равный приведенной толщине элементов конструкции, см, которую следует определять делением удвоенной площади поперечного сечения элемента (с учетом дорожной одежды) на его периметр, граничащий с наружным воздухом. При расчете сталежелезобетонных пролетных строений следует учитывать влияние неравномерного распределения температуры по сечению элементов, вызываемое изменением температуры воздуха и солнечной радиацией.

При расчете перемещений коэффициент линейного расширения следует принимать для стальных и сталежелезобетонных конструкций равным 1,2 × 10-5 и для железобетонных конструкций — 1,0 × 10-5 .

2.28*. Нормативное сопротивление от трения в подвижных опорных частях следует принимать в виде горизонтального продольного реактивного усилия Sf и определять по формуле

Sf = m n F n , (31)

где m n - нормативная величина коэффициента трения в опорных частях при их перемещении, принимаемая равной средней величине из возможных экстремальных значений:

, (32)

Fn - вертикальная составляющая при действии рассматриваемых нагрузок с коэффициентом надежности по нагрузке g f = 1.

Величины возможных максимальных и минимальных коэффициентов трения следует принимать соответственно равными:

а) при катковых, секторных или валковых опорных частях — 0,040 и 0,010;

б) при качающихся стойках или подвесках—0,020 и 0 (условно);

в) при тангенциальных и плоских металлических опорных частях — 0,40 и 0,10;

г) при подвижных опорных частях с прокладками из фторопласта совместно с полированными листами из нержавеющей стали — по табл. 16.

Таблица 16

Средние давления
в опорных частях
по фторопласту,

Коэффициенты трения при температуре наиболее холодной пятидневки
по СНиП 2.01.01-82 с обеспеченностью 0,92

МПа (кгс/см2 )

минус 10 ° С и выше

минус 50 ° С


m max

m min

m max

m min

9,81 (100)

0,085

0,030

0,120

0,045

19,6 (200)

0,050

0,015

0,075

0,030

29,4 (300)

0,035

0,010

0,060

0,020

П р и м е ч а н и е. Коэффициенты трения при промежуточных значениях отрицательных температур и средних давлениях определяются по интерполяции.

Расчетные усилия от сил трения в подвижных опорных частях балочных пролетных строений в зависимости от вида и характера проводимых расчетов следует принимать в размерах:

Sf,max = mmax F n , если при рассматриваемом сочетании нагрузок силы трения увеличивают общее воздействие на рассчитываемый элемент конструкции;

Sf,max = mmin F n , если при рассматриваемом сочетании силы трения уменьшают общее воздействие нагрузок на рассчитываемый элемент конструкции.

Коэффициенты надежности по нагрузке g f к усилиям Smax и Smin не вводятся.

Определение воздействия на конструкции пролетных строений сил трения, возникающих в подвижных опорных частях каткового, секторного и валкового типов при числе опорных частей в поперечном направлении более двух, следует проводить с коэффициентом условия работы, равным 1,1.

Опоры (включая фундаменты) и пролетные строения мостов должны быть проверены на воздействие расчетных сил трения, возникающих от температурных деформаций при действии постоянных нагрузок.

Опорные части и элементы их прикреплений, а также части опор и пролетных строений, примыкающие к опорным частям, должны быть проверены на расчетные силы трения, возникающие от постоянных и временных (без учета динамики) нагрузок.

При расположении на опоре двух рядов подвижных опорных частей пролетных строений, а также при установке в неразрезном и температурно-неразрезном пролетных строениях неподвижных опорных частей на промежуточной опоре продольное усилие следует принимать не более разницы сил трения при максимальных и минимальных коэффициентах трения в опорных частях.

Максимальные и минимальные коэффициенты трения в подвижных опорных частях для группы опор, воспринимающих в неразрезных и температурно-неразрезных пролетных строениях продольные усилия одного знака (соответственно m max,z и m min,z ), допускается определять по формуле

, (33)

где m max , m min  — максимальные и минимальные значения коэффициентов трения для устанавливаемого вида опорных частей;

z  — число опор в группе.

Правая часть формулы (33) рассчитывается со знаком «плюс» при определении m max,z , со знаком «минус» — при определении m min,z .

Величина реактивного продольного усилия Sh , кН (кгс), возникающего в резиновых опорных частях вследствие сопротивления их сдвигу, вычисляется по формуле

, (34)

где d - перемещения в опорных частях, см;

а - суммарная толщина слоев резины, см:

А - площадь резиновой опорной части или нескольких опорных частей в случае расположения их рядом под одним концом балки, м2 (см2 );

G - модуль сдвига, значения которого при определении расчетных величин продольных усилий зависят от нормативной температуры воздуха окружающей среды и принимаются для употребляемых марок резины по следующей таблице:

Марка

резины

Модуль сдвига резины, МПа (кгс/см2 ),
при нормативной температуре окружающего воздуха, ° С


20

-20

-30

-40

-50

-55

НО-69-1

0,88
(9,0)

0,96 (9,8)

1,12 (11,4)

1,43 (14,6)

-

-

ИРП-1347

0,55 (5,6)

0,58 (5,9)

0,59 (6,0)

0,63 (6,4)

0,75 (7,6)

0,86 (9,0)

П р и м е ч а н и е. Промежуточные значения принимаются по интерполяции.

Формула (35) исключена.

Под опорными узлами балок или плит пролетных строений вдоль оси моста необходимо, как правило, устанавливать только одну резиновую опорную часть, а поперек оси моста допускается несколько одинаковых опорных частей, изготовленных из резины одной марки. Применение двух рядом расположенных вдоль оси моста резиновых опорных частей возможно, если оно обосновано в проекте соответствующими расчетами.

2.29*. Воздействие морозного пучения грунта в пределах слоя сезонного промерзания (оттаивания) для сооружений на вечномерзлых грунтах, а также на пучинистых грунтах, сезонно промерзающих на глубину свыше 2 м, следует принимать в виде приложенных по периметру фундамента (или свай) вертикальных касательных сил. Величины сил морозного пучения следует принимать в соответствии с требованиями СНиП 2.02.04-88.

2.30. Строительные нагрузки, действующие на конструкцию при монтаже или строительстве (собственный вес, вес подмостей, кранов, работающих людей, инструментов, мелкого оборудования, односторонний распор и др.), а также при изготовлении и транспортировании элементов следует принимать по проектным данным с учетом предусматриваемых условий производства работ и требований СНиП III -4-80*.

При определении нагрузки от крана вес поднимаемых грузов и вес подвижной стрелы следует принимать с динамическими коэффициентами, равными соответственно 1,20 (0,85) при весе до 196 кН (20 тc) и 1,10 (0,95) при большем весе. При этом, если отсутствие груза на кране может оказать неблагоприятное влияние на работу рассчитываемой конструкции, кран в расчетах учитывается без груза.

При расчете элементов железобетонных конструкций на воздействие усилий, возникающих при их транспортировании, нагрузку от собственного веса элементов следует вводить в расчет с динамическими коэффициентами, равными при перевозке транспортом:

1,6 — автомобильным;

1,3 — железнодорожным.

Динамические коэффициенты, учитывающие условия транспортирования, допускается принимать в меньших размерах, если это подтверждено опытом, но не ниже 1,3 — при перевозке автотранспортом и не ниже 1,15 —железнодорожным транспортом.

2.31. Сейсмические нагрузки следует принимать в соответствии с требованиями СНиП II -7-81*.

2.32*. Коэффициенты надежности по нагрузке g f к прочим временным нагрузкам и воздействиям, приведенным в пп. 2.24* — 2.30, следует принимать по табл. 17*.

Таблица 17*


Прочие временные нагрузки и воздействия

Коэффициент
надежности
по нагрузке g f

Ветровые нагрузки при:


эксплуатации моста

1,4

строительстве и монтаже

1,0

Ледовая нагрузка

1,2

Нагрузка от навала судов

1,2

Температурные климатические деформации и воздействия

1,2

Воздействие морозного пучения грунта

1,3

Воздействие сопротивления от трения в подвижных опорных частях

По п. 2.28*

Строительные нагрузки:


собственный вес вспомогательных обустройств

1,1 (0,9)

вес складируемых строительных материалов и воздействие искусственного регулирования во вспомогательных сооружениях

1,3 (0,8)

вес работающих людей, инструментов, мелкого оборудования

1,3 (0,7)

вес кранов, копров и транспортных средств

1,1 (1,0)

усилия от гидравлических домкратов и электрических лебедок при подъеме и передвижке

1,3 (1,0)

усилия от трения при перемещении пролетных строений и других грузов:


на салазках и по фторопласту

1,3 (1,0)

на катках

1,1 (1,0)

на тележках

1,2 (1,0)

П р и м е ч а н и е. Значения g f , указанные в скобках, принимают в случаях, когда при невыгодном сочетании нагрузок увеличивается их суммарное воздействие на элементы конструкции.

При проверке прочности тела опор в случаях использования их для навесной уравновешенной сборки пролетных строений, а также при проверке прочности анкеров, прикрепляющих в этих случаях пролетное строение к опорам, необходимо к собственному весу собираемых консольных частей пролетного строения, создающих на опоре изгибающие моменты разного знака, вводить коэффициенты надежности по нагрузке с учетам конкретных условий изготовления и монтажа собираемых частей (блоков). При заводской технологии изготовления железобетонных блоков пролетных строений коэффициенты надежности по нагрузке от собственного веса допускается при проверке прочности тела опоры и прикрепляющих анкеров определять по формулам:

для одной консоли ; (36)

для другой консоли , (37)

где z - число блоков, устанавливаемых с каждой стороны.

3. БЕТОННЫЕ И ЖЕЛЕЗОБЕТОННЫЕ КОНСТРУКЦИИ

ОСНОВНЫЕ РАСЧЕТНЫЕ ТРЕБОВАНИЯ

3.1*. При проектировании бетонных и железобетонных мостов и труб необходимо соблюдать указания СТ СЭВ 1406—78 об обеспечении требуемой надежности конструкций от возникновения предельных состояний двух групп, предусмотренных ГОСТ 27751-68 (СТ СЭВ 384—87).

Для этого наряду с назначением соответствующих материалов и выполнением предусмотренных конструктивных требований необходимо проведение указанных в настоящих нормах расчетов.

В расчетах конструкции в целом и отдельных ее элементов необходимо учитывать самые неблагоприятные сочетания нагрузок и воздействий, возможные на различных стадиях их работы.

Рассматриваемые расчетные схемы, общие требования для которых указаны в п. 1.37, должны соответствовать принятым конструктивно-технологическим решениям, учитывать условия изготовления, транспортирования и возведения сооружений, особенности их загружения постоянными и временными нагрузками, порядок предварительного напряжения и регулирования усилий в конструкции.

3.2. Для недопущения предельных состояний первой группы элементы конструкций мостов и труб должны быть рассчитаны в соответствии с указаниями настоящего раздела по прочности, устойчивости (формы и положения) и на выносливость, при этом в расчетах на выносливость должны рассматриваться нагрузки и воздействия, возможные на стадии нормальной эксплуатации сооружений.

Для недопущения предельных состояний второй группы производятся расчеты, указанные в табл. 18.

Таблица 18

Расчет

Рабочая арматура

Стадии работы
конструкции

По образованию
продольных трещин

Ненапрягаемая

Нормальная эксплуатация


Напрягаемая

Все стадии (нормальная эксплуатация, возведение сооружения, предварительное напряжение, хранение,транспортирование)

По образованию трещин, нормальных и наклонных к продольной оси элемента

Напрягаемая

Все стадии

По раскрытию трещин, нормальных и наклонных к продольной оси элемента

Ненапрягаемая и напрягаемая (кроме элементов с напрягаемой арматурой, проектируемых по категории требований по трещиностойкости 2а, см. табл. 39*)

Все стадии

По закрытию (зажатию) трещин, нор-мальных к продольной оси элемента

Напрягаемая

Нормальная эксплуатация

По ограничению касательных напряжений

Ненапрягаемая и напрягаемая

Все стадии

По деформациям (прогибам) пролетных строений в мостах всех назначений и углам перелома профиля проезда
в автодорожных и городских мостах

То же

Нормальная эксплуатация

Закрыть

Строительный каталог