ГОСТ Р 12.3.047-98, часть 3
Р mах1 = Р mах2 ; (А.29)
k st1 = k st2 ,
где 1,2— индексы, относящиеся к двум произвольно выбранным аппаратам.
Для аппарата объемом менее 16 л расчетные значения характеристик сгорания пылевоздушных смесей (по результатам испытаний в крупномасштабной емкости) обладают достаточным запасом надежности.
А.3.2.4 Оценка расчетных значений параметров сгорания пылевоздушных смесей для протяженных аппаратов (с отношением максимального габаритного размера к минимальному порядка 5 и более), а также горения, протекающего в режиме детонации, возможна на основе экспертных заключений.
Пример
Данные для расчета
Рассчитать избыточное давление при сгорании полиэтиленовой пыли в помещении для следующих исходных данных: М вз = 10 кг; M ав = 90 кг; F = 0,3; H т = 47·106 Дж/кг; V св = 2000 м3 ; V ав = 20 м3 ; Р в = 1,2 кг/м3 ; T о = 298 К; pст = 0,1 кг·м3 .
Определяем Z по формуле (А.22)
Z = 0,5F = 0,5 · 0,3 = 0,15.
Определяем М по формуле (А.23)
отсюда следует, что М = 14 кг.
Принимая К н = 3 и подставляя исходные данные в выражение для расчетного избыточного давления при сгорании пылевоздушной смеси, получим:
кПа.
ПРИЛОЖЕНИЕ Б
(обязательное)
МЕТОД РАСЧЕТА РАЗМЕРОВ ЗОН, ОГРАНИЧЕННЫХ НИЖНИМ КОНЦЕНТРАЦИОННЫМ ПРЕДЕЛОМ РАСПРОСТРАНЕНИЯ ПЛАМЕНИ (НКПР) ГАЗОВ И ПАРОВ
Б.1 Метод расчета зон, ограниченных НКПР газов и паров, при аварийном поступлении горючих газов и паров ненагретых легковоспламеняющихся жидкостей в открытое пространство при неподвижной воздушной среде
Б. 1.1 Расстояния X НКПР , Y НКПР и Z НКПР , м, для ГГ и ЛВЖ, ограничивающие область концентраций, превышающих НКПР, рассчитывают по формулам
для ГГ
, (Б.1)
, (Б.2)
для паров ЛВЖ
, (Б.3)
, (Б.4)
где m г - масса поступившего в открытое пространство ГГ при аварийной ситуации, кг;
r г - плотность ГГ при расчетной температуре и атмосферном давлении, кг/м3 ;
m п - масса паров ЛВЖ, поступивших в открытое пространство за время полного испарения, но не более 3600 с, кг;
r г - плотность паров ЛВЖ при расчетной температуре и атмосферном давлении, кг/м3 ;
рн - давление насыщенных паров ЛВЖ при расчетной температуре, кПа;
К - коэффициент (К = для ЛВЖ);
Т— продолжительность поступления паров ЛВЖ в открытое пространство, с;
СНКПР — нижний концентрационный предел распространения пламени ГГ или паров ЛВЖ, % (об.).
Б. 1.2 Радиус r б , м, и высоту Z б , м, зоны, ограниченной НКПР газов и паров, вычисляют исходя из значений H НКПР , Y HKHP и z НКПР .
При этом R б > ХНКПР , R б > Y НКПР и Z б > h + R б для ГГ и Z б > Z НКПР для ЛВЖ (h — высота источника поступления газа от уровня земли, м).
Для ГГ геометрически зона, ограниченная НКПР газов, будет представлять цилиндр с основанием радиусом R б и высотой h б = 2 R б при R б £ h и h б = h + R б при R б > h, внутри которого расположен источник возможного выделения ГГ.
Для ЛВЖ геометрически зона, ограниченная НКПР паров, будет представлять цилиндр с основанием радиусом R б и высотой h = ZНКПР при высоте источника паров ЛВЖ h < ZНКПР и h б = h + ZНКПР при h ³ ZНКПР
За начало отсчета зоны, ограниченной НКПР газов и паров, принимают внешние габаритные размеры аппаратов, установок, трубопроводов и т. п.
Б. 1.3 Во всех случаях значения X НКПР , Y НКПР и ZНКПР должны быть не менее 0,3 м для ГГ и ЛВЖ.
Примеры
1. Определить размеры зоны, ограниченной НКПР паров, при аварийной разгерметизации трубопровода, транспортирующего ацетон.
Данные для расчета
Трубопровод, транспортирующий ацетон, проложен на открытом пространстве на высоте h = 0,5 м от поверхности земли. Трубопровод оснащен ручными задвижками.
Масса паров ацетона, поступивших в открытое пространство за время полного испарения, определена в соответствии с приложением И и составляет m а = 240 кг при времени испарения Т = 3600 с. Максимально возможная температура для данной климатической зоны tр = 36 ° С. Плотность паров ацетона r a при t р равна 2,29 кг/м3 . Нижний концентрационный предел распространения пламени паров ацетона СНКПР = 2,7 % (об.). Давление насыщенных паров ацетона рн при tp равно 48,09 кПа.
Расчет
Расстояния X НКПР , Y НКПР и ZНКПР для ацетона, ограничивающие область концентраций, превышающих НКПР, составят
Таким образом, граница зоны, ограниченной НКПР паров, по горизонтали будет проходить на расстоянии 41,43 м от обечайки трубопровода, а по вертикали — на высоте h б = ZHKHP = 1,55 м от поверхности земли.
2. Определить размеры зоны, ограниченной НКПР газов, при аварийной разгерметизации емкости с метаном на открытом пространстве.
Данные для расчета
При разгерметизации емкости в атмосферу поступит 20 кг метана. Емкость представляет собой цилиндр с основанием радиусом 1 м и высотой h а = 10 м. Максимально возможная температура для данной климатической зоны tр = 30 ° С. Плотность метана r м при t р равна 0,645 кг/м3 . Нижний концентрационный предел распространения пламени метана СНКПР = 5,28 % (об.)
Расчет
Расстояния X НКПР , Y НКПР и ZНКПР для метана, ограничивающие область концентраций, превышающих НКПР, составят
м,
м,
Таким образом, для расчетной аварии емкости с метаном геометрически зона, ограниченная НКПР газов, будет представлять цилиндр с основанием радиусом R б = 26,18 м и высотой h б = h а + R б = 10 + 26,18 = 36,18 м. За начало зоны, ограниченной НКПР газов, принимают внешние габаритные размеры емкости.
Б.2 Метод расчета размеров зон, ограниченных НКПР газов и паров, при аварийном поступлении горючих газов и паров ненагретых легковоспламеняющихся жидкостей в помещение
Нижеприведенные расчетные формулы применяют для случая 100 m / ( r г , п Vсв ) < 0 , 5 СНКПР [СНКПР - нижний концентрационный предел распространения пламени горючего газа или пара, % (об.)] и помещений в форме прямоугольного параллелепипеда с отношением длины к ширине не более 5.
Б.2.1 Расстояния X НКПР , Y НКПР и ZНКПР рассчитывают по формулам
, ( Б.5 )
, ( Б.6 )
, ( Б.7 )
где К1 - коэффициент, принимаемый равным 1,1314 для горючих газов и 1,1958 для легковоспламеняющихся жидкостей;
К2 - коэффициент, равный 1 для горючих газов;
для легковоспламеняющихся жидкостей;
К - коэффициент, принимаемый равным 0,0253 для горючих газов при отсутствии подвижности воздушной среды; 0,02828 для горючих газов при подвижности воздушной среды; 0,04714 для легковоспламеняющихся жидкостей при отсутствии подвижности воздушной среды и 0,3536 для легковоспламеняющихся жидкостей при подвижности воздушной среды;
h — высота помещения, м.
d , l , b и C0 приведены в А.2.3.
При отрицательных значениях логарифмов расстояния X НКПР , Y НКПР и ZНКПР принимают равными 0.
Б.2.2 Радиус R б и высоту Zб , м, зоны, ограниченной НКПР газов и паров, вычисляют исходя из значений X НКПР , Y НКПР и ZНКПР для заданного уровня значимости Q.
При этом R б > X НКПР , R б > Y НКПР и Zб > h + R б для ГГ и Zб > ZНКПР для ЛВЖ (h — высота источника поступления газа от пола помещения для ГГ тяжелее воздуха и от потолка помещения для ГГ легче воздуха, м).
Для ГГ геометрически зона, ограниченная НКПР газов, будет представлять цилиндр с основанием радиусом R б и высотой h б = 2 R б при R б £ h , h б = h + R б при R б > h, внутри которого расположен источник возможного выделения ГГ. Для ЛВЖ геометрически зона, ограниченная НКПР паров, будет представлять цилиндр с основанием радиусом R б и высотой Z б = Z НКПР высоте источника паров ЛВЖ h < Z НКПР и Z б = h + Z НКПР при h ³ Z НКПР . За начало отсчета принимают внешние габаритные размеры аппаратов, установок, трубопроводов и т. п.
Б.2.3 Во всех случаях значения расстояний X НКПР , Y НКПР и ZНКПР должны быть не менее 0,3 м для ГГ и ЛВЖ.
Примеры
1. Определить размеры зоны, ограниченной НКПР паров, образующейся при аварийной разгерметизации аппарата с ацетоном, при работающей и неработающей общеобменной вентиляции.
Данные для расчета
В центре помещения размером 40 х 40 м и высотой h п = 3 м установлен аппарат с ацетоном. Аппарат представляет собой цилиндр с основанием диаметром da = 0,5 м и высотой ha = 1 м, в котором содержится 25 кг ацетона. Расчетная температура в помещении tp = 30 °С. Плотность паров ацетона r а при tр равна 2,33 кг/м3 . Давление насыщенных паров ацетона p н при tр равно 37,73 кПа. Нижний концентрационный предел распространения пламени СНКПР = 2,7 % (об.). В результате разгерметизации аппарата в помещение поступит 25 кг паров ацетона за время испарения Т = 208 с. При работающей общеобменной вентиляции подвижность воздушной среды в помещении u = 0,1 м/с.
Расчет
Допустимые значения отклонений концентраций d при уровне значимости Q = 0,05 будут равны: 1,27 — при работающей вентиляции; 1,25 — при неработающей вентиляции ( u = 0). Предэкспоненциальный множитель С0 будет равен:
при работающей вентиляции
% (об.),
Сн = 100рн /р0 = 100 · 37,73/101 = 37,36 % (об.),
V св = 0,8 V п = 0,8 · 40 · 40 · 3 = 3840 м3 ;
при неработающей вентиляции
% (об.).
Расстояния X НКПР , Y НКПР и ZНКПР составят:
при работающей вентиляции
м ,
м ,
м;
при неработающей вентиляции
м ,
м ,
м.
Таким образом, для ацетона геометрически зона, ограниченная НКПР паров, будет представлять собой цилиндр с основанием радиусом R б и высотой Z б = h а +Z НКПР , так как h а > ZHKHP , при работающей вентиляции
Z б = 1 + 0,2 = 1,2 м, R б = 9,01 м;
при неработающей вентиляции
Z б = 1 + 0,03 = 1,03 м, R б = 10,56 м.
За начало отсчета принимают внешние габаритные размеры аппарата.
2. Определить размеры зоны, ограниченной НКПР газов, образующейся при аварийной разгерметизации газового баллона с метаном, при работающей и неработающей вентиляции.
Данные для расчета
На полу помещения размером 13 х 13 м и высотой H п = 3 м находится баллон с 0,28 кг метана. Газовый баллон имеет высоту hб = 1,5 м. Расчетная температура в помещении t р = 30 °С. Плотность метана r м при t р равна 0,645 кг/м3 . Нижний концентрационный предел распространения пламени метана СНКПР = 5,28 % (об.). При работающей общеобменной вентиляции подвижность воздушной среды в помещении u = 0,1 м/с.
Расчет
Допустимые отклонения концентраций при уровне значимости Q = 0,05 будут равны: 1,37 при работаюшей вентиляции; 1,38 при неработающей вентиляции ( u = 0).
Предэкспоненциальный множитель С0 будет равен:
при работающей вентиляции
% (об.);
при неработающей вентиляции
% (об.);
Расстояния X НКПР , Y НКПР и ZНКПР составят:
при работающей вентиляции
,
,
.
следовательно X НКПР , Y НКПР и ZНКПР = 0;
при неработающей вентиляции
м ,
м ,
м.
Таким образом, для метана при неработающей вентиляции геометрически зона, ограниченная НКПР газов, будет представлять собой цилиндр с основанием радиусом R б = 3,34 м и высотой h б = h + R б = 3 + 3,34 = 6,34 м. Ввиду того, что h б расчетное больше высоты помещения h п = 3 м, за высоту зоны, ограниченной НКПР газов, принимаем высоту помещения h б = 3 м.
ПРИЛОЖЕНИЕ В
(рекомендуемое)
МЕТОД РАСЧЕТА ИНТЕНСИВНОСТИ ТЕПЛОВОГО ИЗЛУЧЕНИЯ ПРИ ПОЖАРАХ ПРОЛИВОВ ЛВЖ И ГЖ
В. 1 Интенсивность теплового излучения q, кВт/м2 , рассчитывают по формуле
q = Ef · Fq · t , (B.1)
где Ef — среднеповерхностная плотность теплового излучения пламени, кВт/м2 ;
Fq — угловой коэффициент облученности;
t — коэффициент пропускания атмосферы.
В.2 Ef принимают на основе имеющихся экспериментальных данных. Для некоторых жидких углеводородных топлив указанные данные приведены в таблице В. 1.
Таблица B.1— Среднеповерхностная плотность теплового излучения пламени в зависимости от диаметра очага и удельная массовая скорость выгорания для некоторых жидких углеводородных топлив
Топливо |
Ef , кВт/м2 , при d, м |
т , кг/(м2 · с) |
||||
|
10 |
20 |
30 |
40 |
50 |
|
СПГ (метан) |
220 |
180 |
150 |
130 |
120 |
0,08 |
СУГ (пропан-бутан) |
80 |
63 |
50 |
43 |
40 |
0,1 |
Бензин |
60 |
47 |
35 |
28 |
25 |
0,06 |
Дизельное топливо |
40 |
32 |
25 |
21 |
18 |
0,04 |
Нефть |
25 |
19 |
15 |
12 |
10 |
0,04 |
Примечание— Для диаметров очага менее 10 м или более 50 м следует принимать Ef такой же, как и для очагов диаметром 10 м и 50 м соответственно |
При отсутствии данных допускается Ef принимать равной 100 кВт/м2 для СУГ, 40 кВт/м2 для нефтепродуктов.
8.3 Рассчитывают эффективный диаметр пролива d, м, по формуле
, ( В.2 )
где S — площадь пролива, м2 .
8.4 Рассчитывают высоту пламени Н, м, по формуле
, ( В.3 )
где т — удельная массовая скорость выгорания топлива, кг/(м · с);
r в — плотность окружающего воздуха, кг/м3 ;
g— ускорение свободного падения, равное 9,81 м/с2 .
8.5 Определяют угловой коэффициент облученности Fq по формуле
, (В.4)
где ,(В.5)
где А = ( h2 + + 1 ) / 2S1 , (В.6)
Sl = 2r/d (r— расстояние от геометрического центра пролива до облучаемого объекта), (В. 7)
h = 2H/d; (B.8)
, ( В.9)
B = ( 1+S 2 ) / ( 2S ) , (B.10)
B.6 Определяют коэффициент пропускания атмосферы t по формуле
t = exp[ -7,0 · 10 -4 ( r - 0,5 d)] (B.11)
Пример — Расчет теплового излучения от пожара пролива бензина площадью 300 м2 на расстоянии 40 м от центра пролива.
Расчет
Определяем эффективный диаметр пролива d по формуле (В. 2)
м.
Находим высоту пламени по формуле (В.3), принимая
т = 0,06 кг / (м2 · с), g = 9,81 м/с2 и r в = 1,2 кг/м3 :
Находим угловой коэффициент облученности Fq по формулам (В.4) — (В. 10), принимая r = 40 м:
h = 2 · 26,5 / 19,5 = 2,72,
S1 =2 · 40 / 19,5= 4,10,
А = (2,722 + 4,102 + 1) / (2 · 4,1) = 3,08,
B = (1 + 4,12 ) / (2 · 4,1) =2,17,
Определяем коэффициент пропускания атмосферы т по формуле (В. 11)
t = exp [ - 7 ,0 · 10 -4 (40 - 0,5 · 19,5 )] = 0,979.
Находим интенсивность теплового излучения q по формуле (В.1), принимая Е f = 47 кВт/м2 в соответствии с таблицей В. 1:
q = 47 · 0,0324 · 0,979 = 1,5 кВт/м2 .
ПРИЛОЖЕНИЕ Г
(рекомендуемое)
МЕТОД РАСЧЕТА РАЗМЕРОВ ЗОН РАСПРОСТРАНЕНИЯ ОБЛАКА ГОРЮЧИХ ГАЗОВ И ПАРОВ ПРИ АВАРИИ
Г.1 Сущность метода
В настоящем приложении установлен порядок расчета изменения во времени концентрации газа в облаке при мгновенном выбросе и непрерывном истечении сжиженного углеводородного газа (СУГ), плотность которого больше плотности воздуха.
Г.1.1 Мгновенный выброс СУГ
Г. 1.1.1 Мгновенный выброс СУГ может происходить при повреждении резервуара или иного аппарата, в котором СУГ находится под давлением.
За счет внутренней энергии СУГ его массовая доля d мгновенно испаряется, образуя с капельками жидкости облако аэрозоля. За счет больших скоростей вихревых потоков происходит быстрое вовлечение в облако воздуха и быстрое испарение оставшейся части СУГ.
Массу воздуха Ма0 , кг, мгновенно вовлекающуюся в облако для такого испарения, рассчитывают по формуле
Ма0 = ( l - d ) Mg Lg / ( Cp.a ( Ta - Tg ) + Xw Lw ) , (Г.1)
где Мg — масса выброшенного СУГ, кг;
Ср .a — удельная теплоемкость воздуха, Дж/(кг·К);
Lg — удельная теплота парообразования СУГ, Дж/кг;
Ta — температура окружающего воздуха, К;
Т g — температура кипения СУГ при атмосферном давлении, К;
Хw — массовая доля водяных паров в воздухе;
Lw — удельная теплота парообразования воды, Дж/кг.
d определяют из соотношения
d = 1 - ехр (- С p.g (T a - Tg ) / Lg ) , (Г.2)
где Cp.g — удельная теплоемкость СУГ, Дж/(кг · К).
Г. 1.1.2 Принимают, что образовавшееся облако дрейфует по ветру со скоростью vd = 0,6 n в ( n в — скорость ветра) и имеет в начальный момент форму цилиндра, высота которого равна его радиусу. С течением времени высота облака уменьшается, а радиус растет.
Изменение во времени радиуса, высоты облака и концентрации газа в нем в этой фазе (называемой фазой падения) определяется путем решения методом Рунге-Кутта (реализованным в виде стандартной программы на ЭВМ) системы обыкновенных дифференциальных уравнений:
dMa / dt = r a p r2 a2 a3 n в Ri-1 + 2 r a а1 ( dr / dt ) p r h,
dT / dt =((dMa / dt) Cp.a ( Ta - T ) + p r2 ( Tgr - T )1,333 ) / ( Ma Cp.a + Mg Cp.g ) , (Г.З)
dr / dt = a4 (gh ( r g.a - r a ) / r g.a ) 0,5 ,
где Ma — масса воздуха в облаке, кг;
r a — плотность воздуха, кг/м3 ;
r — радиус облака, м;
а1 , a2 , a3 , a4 — коэффициенты ( а1 = 0,7, а 2 = 0,5, a4 = 1,07, a3 = 0,3 для классов устойчивости А—В (классы устойчивости даны по Паскуиллу, таблица Г.1); 0,24 — для С—В; 0,16 — для E—F);
Ri — число Ричардсона, определяемое из соотношения
Ri = (5,88 h0,48 g / ( a3 2 n в 2 ) ) ( r g.a - r a ) / r a ;
h — высота облака, м;
Т— температура облака. К;
Т gr — температура земной поверхности. К;
r g.a — плотность паровоздушного облака, кг/м3 .
Таблица Г.1— Классы устойчивости атмосферы по Паскуиллу
Класс по Паскуиллу |
Типичная скорость ветра, м/с |
Описание погоды |
Вертикальный градиент температуры, К/м |
А |
1 |
Безоблачно |
>>>0,01 |
В |
2 |
Солнечно и тепло |
>>0,01 |
С |
5 |
Переменная облачность в течение дня |
>0,01 |
D |
5 |
Облачный день или облачная ночь |
» 0,01 |
Е |
3 |
Переменная облачность в течение ночи |
<0,01 |
F |
2 |
Ясная ночь |
Инверсия (отрицательный градиент) |
Решением системы вышеуказанных уравнений являются зависимости
Ma = Ma (t), Т= Т( t ), r= r(t).
Для решения системы уравнений необходимы дополнительные соотношения
r g.a = (Ma + Mg ) / (Ma / r a + Mg / r g ) ( Ta / T ). (Г.4)
В качестве критерия окончания фазы падения принимают выполнение условия:
( r g.a - r a ) / r g.a < 10-3 . (Г.5)
Зависимость h = h(t) находим из соотношения
h(t)=(Ma / r a + Mg / r g ) (T /Ta )( 1/( p r(t)2 ). (Г.6)
Г. 1.1.3 Когда плотность паровоздушного облака незначительно отличается от плотности воздуха (т. е. после окончания фазы падения), его движение определяется как фаза пассивной дисперсии и описывается процессами турбулентной диффузии.
Концентрацию газа в точке с координатами ( х, у, z) в фазе пассивной дисперсии определяют из формулы
(Г.7 )
где s y , s z — среднеквадратичные отклонения, зависящие от величины xc - x0 ;
х c — координата центра облака в направлении ветра, м
x0 — координата точки окончания фазы падения, м;
s y ( xc - x0 ); s z (xc - x0 ) зависят от класса устойчивости по Паскуиллу.
При xc = x0 принимается s y0 = r / 2,14 , s z0 = h / 2,14;
при xc > x0
Г.1.2 Непрерывное истечение СУГ
Для описания непрерывного истечения СУГ из резервуаров или иных аппаратов предполагается, что результирующая концентрация газа в паровоздушном облаке является суммой концентраций от отдельных элементарных газовых объемов и рассчитывается по формуле
, (Г.8)
где Q = т· t j ,— масса СУГ в j -м элементарном объеме, кг;
т — массовая скорость истечения СУГ, кг/с;
xj— координата центра j -го элементарного объема, м;
— среднеквадратичные отклонения распределения концентраций в j -м элементарном объеме, м.
- определяют аналогично в Г. 1.1.3.
Пример — Расчет динамики паровоздушного облака в открытом пространстве
Для расчета динамики паровоздушного облака (движения в пространстве границы облака, определяемой НКПВ) принимается, что в некоторый момент времени t0 начинается истечение пропана с массовой скоростью 1,3 кг/с, скорость ветра составляет 1 м/с, градиент температуры составляет 0,667 К/м.
Процедура расчета, реализованная на ПЭВМ, представлена на блок-схеме (рисунок Г.1). Результаты расчета границы облака для двух значений времени t0 + 10 с и t 0 + 300 с представлены на рисунке Г.2.
Рисунок Г. 1 — Алгоритм расчета параметров паровоздушного облака
t0 — время начала истечения
Рисунок Г. 2 — Границы паровоздушного облака по НКПВ на различные моменты времени от начала истечения
ПРИЛОЖЕНИЕ Д
(рекомендуемое)
МЕТОД РАСЧЕТА ИНТЕНСИВНОСТИ ТЕПЛОВОГО ИЗЛУЧЕНИЯ И ВРЕМЕНИ СУЩЕСТВОВАНИЯ «ОГНЕННОГО ШАРА»
Д. 1 Расчет интенсивности теплового излучения «огненного шара» q, кВт/м2 , проводят по формуле
q = Ef · Fq · t , (Д.1)
где Ef — среднеповерхностная плотность теплового излучения пламени, кВт/м2 ;
— угловой коэффициент облученности;
t коэффициент пропускания атмосферы.
Д.2 Ef определяют на основе имеющихся экспериментальных данных. Допускается принимать Ef равным 450 кВт/м2 .
Д.3 Fq рассчитывают по формуле
, (Д.2)
где Н— высота центра «огненного шара», м;
Ds — эффективный диаметр «огненного шара», м;
r — расстояние от облучаемого объекта до точки на поверхности земли непосредственно под центром «огненного шара», м.
Д.4 Эффективный диаметр «огненного шара» Ds рассчитывают по формуле
Ds =5,33 m 0,327 , (Д . 3)
где т — масса горючего вещества, кг.
Д.5 H определяют в ходе специальных исследований. Допускается принимать H равной Ds /2.
Д.6 Время существования «огненного шара» ts , с, рассчитывают по формуле
ts = 0,92 m 0,303 . (Д.4)
Д.7 Коэффициент пропускания атмосферы т рассчитывают по формуле
t = ехр [-7,0 · 10 -4 (- Ds / 2)]. (Д.5)
Пример — Определить время существования «огненного шара» и интенсивность теплового излучения от него на расстоянии 500 м при разрыве сферической емкости с пропаном объемом 600 м3 в очаге пожара.
Данные для расчета
Объем сферической емкости 600 м3 . Плотность жидкой фазы 530 кг/м3 . Степень заполнения резервуара жидкой фазы 80 %. Расстояние от облучаемого объекта до точки на поверхности земли непосредственно под центром «огненного шара» 500 м.
Расчет
Находим массу горючего т в «огненном шаре» по формуле
т = V r a = 600 · 530 · 0,8 = 2,54 · 105 кг,
где V— объем резервуара, м3 (V = 600 м3 );
r — плотность жидкой фазы, кг/м3 ( r = 530 кг/м3 );
a — степень заполнения резервуара ( a = 0,8).
По формуле (Д.3) определяем эффективный диаметр «огненного шара» Ds
Ds = 5,33 (2,54 · 105 )0 , 327 = 312 м.
По формуле (Д.2), принимая H = Ds /2 = 156 м, находим угловой коэффициент облученности Fq
По формуле (Д.5) находим коэффициент пропускания атмосферы t :
t = ехр [-7,0 · 10 -4 ( - 312/2)] = 0,77 .
По формуле (Д.1), принимая Ef = 450 кВт/м2 , находим интенсивность теплового излучения q
q = 450 · 0,037 · 0,77 = 12,9 кВт/м2 .
По формуле (Д.4) определяем время существования «огненного шара» ts
ts = 0,92 (2,54 · 105 )0 , 303 = 40 с.
ПРИЛОЖЕНИЕ Е
(рекомендуемое)
МЕТОД РАСЧЕТА ПАРАМЕТРОВ ВОЛНЫ ДАВЛЕНИЯ ПРИ СГОРАНИИ ГАЗОПАРОВОЗДУШНЫХ СМЕСЕЙ В ОТКРЫТОМ ПРОСТРАНСТВЕ
Е. 1 Исходя из рассматриваемого сценария аварии, определяют массу т, кг, горючих газов и (или) паров, вышедших в атмосферу из технологического аппарата (приложение А).
Е.2 Избыточное давление D p , кПа, развиваемое при сгорании газопаровоздушных смесей, рассчитывают по формуле
, (Е. 1)
где р 0 — атмосферное давление, кПа (допускается принимать равным 101 кПа);
r — расстояние от геометрического центра газопаровоздушного облака, м;
m пp — приведенная масса газа или пара, кг, рассчитанная по формуле
m пр = ( Q сг / Q 0 ) m г,п Z,
где Q сг — удельная теплота сгорания газа или пара, Дж/кг;
Z— коэффициент участия, который допускается принимать равным 0,1;
Q 0 — константа, равная 4,52 · 106 Дж/кг;
m г,п — масса горючих газов и (или) паров, поступивших в результате аварии в окружающее пространство, кг.
Е.3 Импульс волны давления i , Па · с, рассчитывают по формуле
. (Е.3)
Пример — Рассчитать избыточное давление и импульс волны давления при выходе в атмосферу пропана, хранящегося в сферической емкости объемом 600 м3 , на расстоянии 500 м от нее.
Данные для расчета
Объем емкости 600 м3 . Температура 20 °С. Плотность сжиженного пропана 530 кг/м3 . Степень заполнения емкости 80 % (по объему). Удельная теплота сгорания пропана 4,6 · 107 Дж/кг. Принимается, что в течение времени, необходимого для выхода сжиженного газа из емкости, весь пропан испаряется.
Расчет
Находим приведенную массу m пр по формуле (Е.2):
m пр = 4,6 · 107 / 4,52 · 106 · (0,8· 530 · 600) · 0,1 = 2,59 · 105 кг.
Находим избыточное давление D p по формуле (Е.1)
D p = 101 [0,8 (2,59 · 105 ) 0,33 / 500 + 3 (2,59 · 105 ) 0 , 66 / 5002 + 5 (2,59 · 105 ) / 5003 ] = 16,2 кПа.
Находим импульс волны давления i по формуле (Е.3):
i = 123 (2,59 · 10 5 )0 , 66 / 500 = 1000 Па · с.
ПРИЛОЖЕНИЕ Ж
(рекомендуемое)
МЕТОД РАСЧЕТА ПАРАМЕТРОВ ВОЛНЫ ДАВЛЕНИЯ ПРИ ВЗРЫВЕ РЕЗЕРВУАРА С ПЕРЕГРЕТОЙ ЖИДКОСТЬЮ ИЛИ СЖИЖЕННЫМ ГАЗОМ ПРИ ВОЗДЕЙСТВИИ НА НЕГО ОЧАГА ПОЖАРА
Ж. 1 При попадании замкнутого резервуара со сжиженным газом или жидкостью в очаг пожара может происходить нагрев содержимого резервуара до температуры, существенно превышающей нормальную температуру кипения, с соответствующим повышением давления. За счет нагрева несмоченных стенок сосуда уменьшается предел прочности их материала, в результате чего при определенных условиях оказывается возможным разрыв резервуара с возникновением волн давления и образованием «огненного шара». Расчет параметров «огненного шара» изложен в приложении Д. Порядок расчета параметров волн давления изложен ниже. Разрыв резервуара в очаге пожара с образованием волн давления получил название BLEVE (Boiling Liquid Expanding Vapour Explosion — взрыв расширяющихся паров вскипающей жидкости).
Ж. 2 Возможность возникновения BLEVE для конкретного вещества, хранящегося в замкнутой емкости, определяют следующим образом.
Ж.2.1 Рассчитывают d по формуле
d = Ср (T-T кип ) / L , (Ж.1)
где Ср— удельная теплоемкость жидкой фазы, Дж/кг;
Т— температура жидкой фазы, соответствующая температуре насыщенного пара при давлении срабатывания предохранительного клапана, К;
T кип — температура кипения вещества при нормальном давлении. К;
L — удельная теплота испарения при нормальной температуре кипения Т кип , Дж/кг.
Ж.2.2 Если d < 0,35, BLEVE не происходит. При d ³ 0,35 вероятность возникновения данного явления велика.
Ж.3 Параметрами волны давления, образующейся при BLEVE, являются избыточное давление в положительной фазе волны D p и безразмерный импульс положительной фазы волны i .
D p , кПа, и i, Па·с, рассчитывают по формулам:
, (Ж.2)
, (Ж.3)
где p0 — атмосферное давление, кПа (допускается принимать равным 101 кПа);
r — расстояние до разрушающегося технологического оборудования, м;
mпр — приведенная масса, кг, рассчитанная по формуле
mпр = E иэ / Q0 . (Ж.4)
где E иэ — энергия, выделяющаяся при изэнтропическом расширении среды, находящейся в резервуаре, Дж;
q0 — константа, равная 4,52 · 106 Дж/кг.
Ж.4 E иэ , Дж, рассчитывают по формуле
E иэ = С эфф m ( Т - Т кип ) . (Ж.5)
где m — масса вещества в резервуаре, кг;
С эфф — константа, равная 500 Дж/(кг·К);
Т — температура вещества в резервуаре в момент его взрыва, К;
Т кип — температура кипения вещества при атмосферном давлении, К.
При наличии в резервуаре предохранительного клапана Т, К, допускается рассчитывать по формуле
, (Ж.6)
где А, В, Са — константы Антуана вещества;
рк — давление срабатывания предохранительного клапана, кПа. Константа А должна соответствовать давлению, выраженному в килопаскалях.
Пример — Расчет параметров ударной волны при BLEVE
Данные для расчета
Рассчитать параметры положительной фазы волны давления на расстоянии 750 м от эпицентра аварии, связанной с развитием BLEVE на железнодорожной цистерне вместимостью 50 м3 с 10 т жидкого пропана. Цистерна имеет предохранительный клапан на давление срабатывания 2,0 МПа.
Расчет Энергию, выделившуюся при расширении среды в резервуаре, рассчитывают по формуле (Ж.5).
E иэ = С эфф m ( Т - Т кип ),
где m = 4 · 104 кг — масса пропана в цистерне;
Сэфф — константа, равная 500 Дж/кг·К);
Ткип = - 43 + 273 = 230 К — температура кипения пропана при постоянном давлении.
Т, К, находим по формуле (Ж.6)
где рк = 2,000 кПа, А = 5,949, В = 812,648, Са = 247,55.
Отсюда
Получим E иэ
E иэ = 4 · 104 (332-230)500 = 2,06 · 109 Дж.
Находим приведенную массу m пр , кг, по формуле (Ж.4)
m пр = 2,06 · 109 / (4,52 · 106 ) = 456 кг.
Вычислим D p и i по формулам (Ж.2) и (Ж.3)
D р = 101 (0,8 · 456 0, 33 / 750 + 3 · 456 0, 66 / 7502 + 5 · 4563 / 750 ) = 0,86 кПа,
i = 123 · 45 60,66 / 750 = 9,7 Па · с.
ПРИЛОЖЕНИЕ И
(рекомендуемое)
МЕТОД РАСЧЕТА ПАРАМЕТРОВ ИСПАРЕНИЯ ГОРЮЧИХ НЕНАГРЕТЫХ ЖИДКОСТЕЙ И СЖИЖЕННЫХ УГЛЕВОДОРОДНЫХ ГАЗОВ
И. 1 Интенсивность испарения W, кг/(с·м2 ), определяют по справочным и экспериментальным данным. Для ненагретых выше температуры окружающей среды ЛВЖ, при отсутствии данных допускается рассчитывать W по формуле1)
W = 10-6 h p н , (И.1)
_______
1) Формула применима при температуре подстилающей поверхности от минус 50 до плюс 40 °С.
где h — коэффициент, принимаемый по таблице И.1 в зависимости от скорости и температуры воздушного потока над поверхностью испарения;
М — молярная масса, г/моль;
p н — давление насыщенного пара при расчетной температуре жидкости t р , определяемое по справочным данным, кПа.
Таблица И.1
Скорость воздушного потока в помещении, |
Значение коэффициента h при температуре t, ° С, воздуха в помещении |
||||
м/с |
10 |
15 |
20 |
30 |
35 |
0,0 |
1,0 |
1,0 |
1,0 |
1,0 |
1,0 |
0,1 |
3,0 |
2,6 |
2,4 |
1,8 |
1,6 |
0,2 |
4,6 |
3,8 |
3,5 |
2,4 |
2,3 |
0,5 |
6,6 |
5,7 |
5,4 |
3,6 |
3,2 |
1,0 |
10,0 |
8,7 |
7,7 |
5,6 |
4,6 |