Защита бетонных констр. (к СНиП 2.03.11-85), часть 7
Сульфат алюминия является агрессивным компонентом по следующим показателям:
по содержанию соли — 260000 мг/л и по содержанию сульфатов в пересчете на ионы SO4 — 222000 мг/л (физическая и химическая коррозия III вида). Кроме того, Al2 (SO4 )3 как соль слабого основания и сильной кислоты опасна и по показателю рН (кислотная коррозия II вида).
Исходя из этого по табл. 5(5) и 6(6) настоящего Пособия оцениваем степень агрессивного воздействия среды как сильноагрессивную к бетону марки по водонепроницаемости W8. Конструкция емкости должна быть выполнена из бетона на сульфатостойком цементе марки по водонепроницаемости W8.
По табл. 18(13) для сильноагрессивной среды могут быть применены мастичные, оклеечные или облицовочные (футеровочные) покрытия IV группы.
Емкость для хранения сернокислого алюминия является ответственным сооружением, внутренняя поверхность которого подвергается абразивным воздействиям, связанным с технологическими особенностями загрузки и растворения продукта.
В соответствии с табл. 23, с учетом особенностей эксплуатации емкости, учитывая опыт проектирования аналогичных сооружений, принимается футеровочное комбинированное покрытие IV группы, вариант I с непроницаемым подслоем из полиизобутилена ПСГ.
В качестве футеровочного слоя принят кислотоупорный кирпич на силикатной замазке, стойкой в кислых средах.
Исходя из условия статической устойчивости футеровки, по подслою, с учетом высоты и конструкции емкости с наклонными стенками, футеровка принята в 1/4 кирпича.
Емкость перекрыта съемными деревянными щитами.
Узел установки сливного штуцера, выполненного из коррозионно-стойкой стали, и другие узлы защиты приводятся на рис. 1.
Рис. 1. Емкость для хранения сернокислого алюминия (перекрытие — съемные деревянные щиты)
а ¾ общий вид емкости; б — узел защиты верхней части корпуса А; в — узел защиты корпуса Б; г — узел защиты корпуса и днища В; д — узел защиты верхней части перегородки Г; е — узел установки штуцера из коррозионно-стойкой стали Д; 1 — корпус и днище железобетонные; 2 — полиизобутилен ПСГ; 3 — кирпич кислотоупорный; 4 — перегородка железобетонная; 5 — решетка металлическая; 6 — штуцер с фартуком из коррозионно-стойкой стали; 7 — химически стойкое уплотнение
Пример 2. Усреднитель хромсодержащих стоков с габаритами 6600´ 1800´ 2300 (h ). Установлен в здании.
Подробные условия эксплуатации изложены в поз. 2 Задания.
Из перечня компонентов гр. 5 Задания агрессивными являются Na 2 Cr2 O7 и H 2 SO 4 , которые вызывают коррозию II вида (кислотную) при величине рН = 3 — 4.
По табл. 5(5) при рН = 3 — 4 степень агрессивного воздействия среды к бетону марки по водонепроницаемости W8 оценивается как среднеагрессивная, a W6 — сильноагрессивная.
Принимаем бетон марки по водонепроницаемости W8.
Содержание аммонийной соли (N Н4 )2 Сr 2 О7 может оказывать влияние на коррозию бетона, но концентрация соли в растворе мала и в пересчете на ион NH 4 + неагрессивна к бетону с маркой по водонепроницаемости W8.
По табл. 18(13) для среднеагрессивной среды могут быть применены мастичные, оклеечные или облицовочные (футеровочные) покрытия III— IV группы.
Усреднитель относится к очистным сооружениям. В соответствии с табл. 23 и «Руководством по проектированию защиты от коррозии железобетонных резервуаров очистных сооружений» (ММСС, СССР, 1981) для среднеагрессивной среды рекомендуется толстослойное лакокрасочное (мастичное) покрытие на основе модифицированных эпоксидных материалов.
Учитывая, однако, опыт проектирования аналогичных емкостей и особенности эксплуатации, принимаем покрытие не III, а IV группы, вариант I эпоксидно-сланцевый состав.
Покрытие принято с учетом малой концентрации компонентов агрессивной среды и экономии дефицитных дорогостоящих эпоксидных материалов в соответствии с ТП 101-81*.
В связи с наличием шлама на днище емкости и необходимостью периодического его удаления предусматриваем по днищу футеровку кислотоупорными штучными материалами.
Принимая во внимание конструктивные особенности емкости и необходимость защиты днища и стенок на высоту образования шлама (Н = 300 мм от наиболее высокой точки днища), футеровка принята кислотоупорным кирпичом в 1/4 из условия ее статической устойчивости.
Опорные столбики под барботер для перемешивания раствора выполнены в виде кладки из кислотоупорного кирпича с сохранением заданной отметки верха.
Штуцер слива защищается кислотоупорным вкладышем.
Покрытие емкости из монолитного железобетона с двумя люками диаметром 800 мм окрашивается эпоксидно-сланцевыми материалами аналогично защите корпуса емкости.
Узлы защиты даны на рис. 2.
Рис. 2. Усреднитель хромсодержащих стоков
а — общий вид; б — узел защиты днища и корпуса А; в — узел установки столбика из кислотоупорных материалов Б; г — узел защиты сливного штуцера В; 1 — корпус и днище желозобетонные; 2 — эпоксидно-сланцевое покрытое ЭСД-2; 3 ¾ кирпич кислотоупорный; 4 ¾ кислотоупорный вкладыш; 5 — химически стойкое уплотнение
Пример 3. Нефтеловушка 12000´ 4000´ 2400 (h). Установлена в здании.
Подробные условия эксплуатации изложены в позиции 3 задания.
Раствор серной кислоты (графа 5 и 7 Задания) вызывает коррозию бетона II вида — кислотную.
В соответствии с п. 2.58 СНиП 2.03.11¾ 85 бетон для емкостных сооружений для нефти и нефтепродуктов принимается марки W8.
По табл. 5(5) настоящего Пособия при величине рН 3—5 определяем степень агрессивного воздействия среды к бетону марки по водонепроницаемости W8 как среднеагрессивную.
По табл. 8(8) определяем степень агрессивного воздействия минерального масла. К бетону W8 минеральные масла неагрессивны.
По табл. 18(13) для среднеагрессивной среды могут быть применены мастичные, оклеечные, облицовочные (футеровочные) покрытия III— IV группы.
Из перечисленных покрытий принимаем толстослойное (мастичное) лакокрасочное покрытие по табл. 23 IV группы, вариант I ¾ эпоксидно-сланцевый состав.
Покрытие принято с учетом малой концентрации компонентов агрессивной среды (10 мг/л Н2 S О4 ) и экономии дефицитных и дорогостоящих эпоксидных материалов в соответствии с ТП 101-81*. Учитывая наличие шлама на днище емкости и необходимость периодического его удаления, предусматриваем по днищу слой кислотоупорной керамической плитки толщиной 20 мм. Емкость перекрыта съемными деревянными щитами. Узел установки сливного штуцера, выполненного из коррозионно-стойкой стали, и другие узлы защиты приводятся на рис. 3.
Рис. 3. Нефтеловушка (перекрытие — съемные деревянные щиты)
а — общий вид; б — узел защиты днища и корпуса А; в — узел установки штуцера из коррозионно-стойкой стали Б; г — узел защиты приямка в днища В; д — узел защиты внутреннего переливного лотка Г; 1 — корпус и днище железобетонные; 2 — эпоксидно-сланцевое покрытие ЭСД-2; 3 — плитка кислотоупорная керамическая КШ-20; 4 — штуцер с фартуком из коррозионно-стойкой стали; 5 — химически стойкое уплотнение; 6 — лоток железобетонный; 7 — деревянная доска и крепление
Дымовые, газодымовые и вентиляционные трубы
5.2 (2.50—2.56). Трубы по назначению разделяются на:
дымовые и газодымовые — отводящие дым и газовоздушные смеси, образующиеся при сжигании различных видов топлива. В смесях содержатся газы среднеагрессивные или неагрессивные, взвеси сажи, золы и пыли. Влажность дымо- и газовоздушных смесей не превышает 60 %, температура от 70 — 600 ° С;
вентиляционные — отводящие слабоагрессивные, среднеагрессивные или сильноагрессивные газовоздушные смеси от вентиляционных систем или местных отсосов газовыделяющей аппаратуры или образующиеся при сжигании топлива для обжига и плавления различных материалов. Влажность слабоагрессивных или среднеагрессивных газовоздушных смесей не превышает 80 %. Температура 20—70 ° С, периодически возможно образование конденсата. Влажность сильноагрессивных газовоздушных смесей достигает 95 %.
Антикоррозионная защита труб устанавливается в зависимости от условий эксплуатации по среде и температуре и требований по рассеиванию дымовых газов с учетом конструктивного решения труб и определяется:
высотой трубы, внутренним диаметром выходного отверстия;
температурой, относительной влажностью и химическим составом отводимых газов;
точкой росы удаляемых газов, возможностью образования и химическим составом конденсата на поверхности футеровки и несущего ствола;
количеством, скоростью движения и статическим давлением или разрежением газов в газоотводящем стволе;
суточными, месячными и годовыми изменениями условий эксплуатации;
климатическим районом строительства трубы;
способом возведения несущего ствола.
Для железобетонного ствола дымовых и газодымовых труб с агрессивными газообразными средами, содержащими соединения серы, необходимо применять бетон на сульфатостойком портландцементе или сульфатостойком портландцементе с минеральными добавками. Допускается применение портландцементов с минеральными добавками, в клинкере которых содержание трехкальциевого алюмината c 3 a не превышает 7 % и общее количество C 3 A + C 4 AF £ 22 %.
В качестве заполнителей для бетона труб следует применять фракционированный щебень плотных и прочных невыветренных изверженных пород водопоглощением не более 0,5 % и кварцевый или полевошпатовый песок с модулем крупности не менее 2,2.
Требования к материалам и бетону труб приведены в «Инструкции по возведению монолитных железобетонных труб и башенных градирен» (ВСН 430-82 ММСС, СССР).
Применение материалов с другими характеристиками для приготовления бетона несущих стволов труб производится по согласованию с проектной организацией.
Защиту внутренней поверхности стволов железобетонных дымовых и газодымовых труб, а также наружных поверхностей участков зоны окутывания при температуре до 80° С следует выполнять в зависимости от степени агрессивного воздействия среды лакокрасочными покрытиями на основе эпоксидных, эпоксидно-каменноугольных, полиуретановых, бутилкаучуковых и других пленкообразующих, применяемых для получения высоконаполненных утолщенных мастичных и обычных лакокрасочных покрытий по табл. 19. Как правило, следует предусматривать лакокрасочные материалы заводского производства: эпоксидной шпатлевки ЭП-00-10, эпоксидных эмалей ЭП-140, ЭП-582, ЭП-917 и эпоксидно-каменноугольных эмалей ЭКП, полиуретанового лака УР-231, бутилкаучуковых мастик и др.
Для защиты участков железобетонных стволов труб, на которых возможно образование конденсата от удаляемых газов, следует применять листовые и рулонные защитные покрытия: полиизобутилен, бутилкаучук и др., наклеиваемые на изолируемую поверхность в два слоя. От температурного воздействия дымовых газов, а также для обеспечения эффективной защиты при использовании листовых и рулонных материалов необходимо устройство прижимной футеровки.
В условиях непосредственного воздействия паров серной и других кислот с температурой до 50 ° С следует применять мастики на основе бутилкаучука. Общая толщина двухслойного бутилкаучукового покрытия составляет 4—5 мм. Толщина первого грунтовочного слоя — 1 ¸ 1,5 мм. Второй покровный слой (с добавкой антофилитового асбеста) наносится на изолируемую поверхность шпателем. В качестве растворителя применяется гексан.
Для таких же условий эксплуатации, но при температуре отходящих газов >50° С (100 — 140° С), несущий железобетонный ствол трубы рекомендуется защитить фторлоноэпоксидным лаком ЛФЭ-32х (ТУ 6-05-1884-80).
Покрытие из цементно-песчаного раствора, наносимого методом полусухого торкретирования или пневмобетонирования, применяется при подготовке поверхности бетона или кирпичной кладки, для нанесения антикоррозионной защиты, а при отсутствии в отходящих газах агрессивных составляющих — в качестве самостоятельной защиты.
При повышенной влажности отходящих газов, но в отсутствии агрессивных составляющих, применяются торкрет-смеси из вяжущего, мелкого заполнителя, пластификатора и воды. В качестве вяжущего используется портландцемент или пластифицированный портландцемент марки не ниже 400, соответствующий требованиям ГОСТ 10178—85, с нормальной густотой цементного теста не более 27 %. Для улучшения качества торкрет-бетона рекомендуется добавлять в воду лигносульфонат технический (0,15 % массы цемента) или мылонафт (0,2 % массы цемента).
При наличии в отходящих газах агрессивных компонентов применяются кислотоупорные торкрет-штукатурки в соответствии с ВСН 421-81 ММСС СССР «Инструкция по составам, технологии изготовления и укладки кислотоупорных торкрет-штукатурок».
В зависимости от режима работы трубы и химического состава газов футеровка выполняется из глиняного кирпича на цементно-песчаном, цементно-глиняном или кислотоупорном растворе; из шамотного кирпича на цементно-шамотно-глиняном растворе; из кислотоупорного кирпича на кислотоупорном растворе.
Для футеровки вентиляционных железобетонных труб должны быть применены фасонная кислотоупорная керамика и кислотоупорный кирпич на полимерной или кислотостойкой замазке.
Футеровку железобетонных стволов труб при отводе продуктов сгорания природного газа, не содержащих агрессивных компонентов, с температурой 70—250 ° С следует выполнять из лекального или обыкновенного глиняного кирпича на цементном растворе марки не ниже 50.
Футеровку железобетонных стволов труб при отводе дымовых газов, содержащих 0,05 — 0,4 % SO 2 и до 0,008 % SO 3 с температурой выше точки росы и не образующих в стволе конденсата кислот (на футеровке), следует выполнять из лекального или глиняного или кислотоупорного кирпича на цементном или кислотоупорном растворе марки не ниже 50.
Футеровку железобетонных стволов труб при отводе дымовых газов, содержащих 0,05 — 0,4% SO 2 , до 0,01 % SO 3 и окислов азота с температурой 70 — 150 ° С и способных образовывать на поверхности кислотный конденсат, следует выполнять из кислотоупорного кирпича на кислотоупорном растворе с устройством в местах сопряжений слезниковых поясов из кислотоупорной керамики или из блоков легкого кислотоупорного бетона на калиевом или натриевом жидком стекле, модифицированного уплотняющими добавками. Стыки блоков заполняются кислотоупорным раствором.
Футеровку железобетонных стволов труб при отводе дымовых газов с температурой 300 ° С и выше следует выполнять из шамотного кирпича на цементно-шамотном растворе.
Заполнение зазоров в узлах сопряжения звеньев футеровки выполняется теплостойкой мягкой резиной или битумно-асбестовыми составами, обладающими эластичными свойствами в широком интервале температур.
В двухслойных конструкциях дымовых труб, представляющих собой несущий ствол из тяжелого портландцементного бетона и расположенную вплотную к нему монолитную футеровку, в качестве футеровки должны применяться легкие полимерцементные или полимерсиликатные бетоны.
В слабоагрессивных средах рекомендуется футеровка из легкого полимерцементного бетона повышенной коррозионной стойкости с добавкой водорастворимой ацетоноформальдегидной смолы АЦФ ЗМ (ТУ 59.02.039.57—83).
В средне- и сильноагрессивных газовых средах рекомендуется несущий ствол защищать полимерсиликатным бетоном.
Подземные трубопроводы
5.3 (2.61). В настоящем разделе излагается защита от коррозии подземных трубопроводов, выполненных из железобетонных труб:
напорных виброгидропрессованных (ГОСТ 12586.0—83);
со стальным цилиндром РТНС (ТУ 33-6-82);
со стальным цилиндром, пропитанных петролатумом (ГОСТ 26819—86).
Указанные трубы предназначены для транспортирования неагрессивных по отношению к бетону стальной арматуре жидкостей и эксплуатации в неагрессивных грунтах или грунтовых водах; в агрессивных средах для обеспечения их долговечности следует предусматривать меры защиты от коррозии стальной арматуры и бетона.
Степень агрессивного воздействия внутренней или внешней жидкой агрессивной среды по отношению к бетону виброгидропрессованных труб устанавливается по табл. 5(5), 6(6). При этом в защитном слое марка бетона труб по водонепроницаемости должна приниматься со стороны внешней и внутренней поверхностей соответственно не ниже W4 и W6.
Для труб со стальным цилиндром марка бетона по водонепроницаемости должна быть не ниже W4.
По отношению к стальным элементам железобетонных труб внутренняя или внешняя среда считается агрессивной по содержанию хлор-ионов (в транспортируемой жидкости, грунтовых водах или выше уровня грунтовых вод в поровой влаге грунтов), мг/л:
для виброгидропрессованных труб св. . . . . . . . . . . . . . . . . . . . 500;
для труб со стальным цилиндром, не пропитанных
петролатумом, при марке по водонепроницаемости
защитного слоя бетона более W4 и допустимой ширине
раскрытия трещин 0,1мм . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . св. 300;
при марке по водонепроницаемости защитного слоя
бетона менее W4 и допустимой ширине раскрытия трещин
0,2 мм . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . св. 150;
для труб со стальным цилиндром, пропитанных
петролатумом . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . св. 500
Для защиты от коррозии бетона труб следует предусматривать при слабой степени агрессивного воздействия лакокрасочные или мастичные покрытия, а при средней или сильной степени агрессивного воздействия — утолщенные мастичные покрытия или пропитку.
Все защитные покрытия должны обладать механической прочностью.
При содержании хлорид-ионов в грунтовых водах или выше уровня грунтовых вод в поровой влаге грунтов менее или равных величин, указанных выше, стальные элементы железобетонных труб подземных трубопроводов (арматура, стальной цилиндр, закладные детали) можно не защищать от коррозии.
При содержании хлорид-ионов более величин, указанных выше, необходимо применять электрохимическую защиту от коррозии.
Электрохимическая защита подземных трубопроводов предусматривается от электрокоррозии и от почвенной коррозии.
Защиту металлических элементов железобетонных трубопроводов от электрокоррозии следует выполнять в анодных и знакопеременных зонах при обнаружении опасных значений потенциала «арматура—бетон» или плотности тока утечки с арматуры по табл. 24(14) в соответствии с требованиями разд. 6 настоящего Пособия.
Защиту подземных трубопроводов от почвенной коррозии следует осуществлять катодной поляризацией с помощью установок катодной защиты или протекторов, которые могут использоваться самостоятельно или в комплексе друг с другом.
Катодную поляризацию труб следует осуществлять так, чтобы создаваемые на поверхности металлических элементов защитные поляризационные потенциалы были (по абсолютной величине) не ниже — 0,85 В и не выше — 1,1 В по медносульфатному электроду сравнения.
Защитные поляризационные потенциалы на поверхности металлических элементов труб следует измерять в специально оборудованных контрольно-измерительных пунктах, устанавливаемых с интервалом 150 — 200 м, по методике прил. 2 к ГОСТ 9.015—74*.
На трубопроводах, подлежащих электрохимической защите, следует выполнять мероприятия по созданию непрерывной продольной электрической проводимости по металлу. Для этого металлические элементы отдельных труб (арматура, стальные цилиндры) должны соединяться металлическими перемычками. Электрическое сопротивление перемычки не должно превышать электрического сопротивления 1 м трубопровода.
Установки электрохимической защиты (катодные станции, анодные заземления, протекторы, датчики электрохимического потенциала, неполяризующиеся электроды сравнения, кабели) должны соответствовать ГОСТ 9.015—74*.
Для электрохимической защиты виброгидропрессованных труб рекомендуется использовать автоматические катодные станции акс, импульсные катодные станции ИКС, типовые катодные станции малой мощности КСС-150, КСС-300, КСС-600, КСГ-500, для протекторной защиты — протектор МП-10, для дренажной защиты — поляризованные электродренажи ПГД-200, ПГД-100, ПГД-60.
6. ОСОБЕННОСТИ ЗАЩИТЫ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ОТ ЭЛЕКТРОКОРРОЗИИ
6.1 (2.62—2.65). Защита от электрокоррозии должна быть предусмотрена:
а) при наличии блуждающих токов от установок постоянного тока для:
железобетонных конструкций зданий и сооружений отделений электролиза;
конструкций сооружений электрифицированного на постоянном токе рельсового транспорта;
трубопроводов, коллекторов, фундаментов и других протяженных подземных конструкций зданий и сооружений, расположенных в поле тока от постороннего источника;
б) от действия переменного тока:
при использовании железобетонных конструкций в качестве заземляющих устройств;
для железобетонных конструкций железнодорожного транспорта, электрифицированного на переменном токе.
Опасность коррозии блуждающими токами следует устанавливать по основным показателям — величинам потенциала «арматура—бетон» или по плотности тока утечки с арматуры. Основные показатели опасности приведены в табл. 24.
Таблица 24(14)
|
|
Основные показатели опасности в анодных и знакопеременных зонах* |
|
Конструк ции |
Здания и сооружения |
потенциал арматура¾ бетон по отношению к медносульфатному электроду, В |
плотность тока утечки с арматуры, мА/дм2 |
Подзем ные |
Указанные в п. 2.62 при содержании Сl ¾ в грунтовой воде до 0,2 г/л** |
Св. 0,5 |
Св. 0,6 |
Надзем ные |
Отделений электролиза расплавов, сооружения промышленного рельсового транспорта |
Св. 0,5 |
Св. 0,6 |
|
Отделений электролиза водных растворов |
Св. 0,0 |
Св. 0,6 |
|
Магистрального и пригородного железнодорожного транспорта, электрифицированного на постоянном токе |
Опасность отсутствует |
|
* Приведенные показатели действительны при условии защиты арматуры бетоном в конструкциях с шириной раскрытия трещин не более указанной в п. 2.67. При наличии в защитном слое бетона трещин с шириной раскрытия более указанной в п. 2.67, показатели опасности электрокоррозии следует принимать по ГОСТ 9.015—74*. ** Определение содержания ионов хлора в грунтовой воде производится в соответствии с ГОСТ 9.015—74.* |
Опасность коррозии блуждающими токами допускается оценивать также по косвенным показателям (ток утечки с арматуры, электрическое сопротивление цепи заземления и т. п.).
Косвенные показатели наиболее часто используются для оценки опасности электрокоррозии в анодных и знакопеременных зонах подземных частей железобетонных конструкций сооружений железнодорожного транспорта, электрифицированного на постоянном токе (табл. 25).
Таблица 25
|
Косвенные показатели опасности электрокоррозии |
||
Наименование конструкций |
электрическое сопротивление цепи заземления на каждый вольт среднего значения положительных потенциалов «рельс—земля» или «трос—земля», Ом/В, менее |
ток утечки мА, свыше* |
электрическое сопротивление цепи заземления, Ом, менее |
Железобетонные опоры контактной сети с индивидуальным заземлением на рельсы |
25 |
40 |
— |
Железобетонные опоры контактной сети при групповом соединении тросом: без заземления троса на рельсы или с заземлением троса на рельсы через искровые промежутки (ИП), диодные заземлители (ЗД) и т. п. устройства при длине троса, м: |
|
|
|
до 600 |
Опасность отсутствует |
||
св. 600 до 1500 |
¾ |
¾ |
10 |
» 1500 |
— |
— |
100 |
Бетонные и железобетонные фундаменты металлических опор контактной сети с индивидуальным заземлением на рельсы |
25 |
40 |
¾ |
Бетонные и железобетонные фундаменты металлических опор контактной сети при групповом соединении опор тросом: без заземления троса на рельсы или с заземлением троса на рельсы через искровые промежутки (ИП), диодные заземлители (ЗД) и тому подобные устройства при длине троса, м: |
|
|
|
до 600 |
Опасность отсутствует |
||
более 600 |
25 |
40 |
¾ |
Бетонные фундаменты светофоров |
400 |
2,5 |
— |
Железобетонные мачты светофоров, фундаменты релейных шкафов |
100 |
10 |
— |
* Средний за время измерения. |
Опасность коррозии переменным током промышленной частоты для конструкций, используемых в качестве заземляющих устройств, определяется плотностью тока, длительно стекающего с внешней поверхности арматуры подземных конструкций в грунт, превышающей 10 мА/дм2 .
Состояние железобетонных конструкций зданий и сооружений отделений электролиза и железобетонных конструкций электрифицированного на постоянном токе рельсового транспорта является заведомо опасным, в связи с чем при проектировании этих конструкций следует в обязательном порядке предусматривать мероприятия по защите от электрокоррозии, а в период эксплуатации производить контроль за коррозионным состоянием с целью установления опасности электрокоррозии и необходимости осуществления дополнительных мероприятий по защите.
Опасность электрокоррозии подземных железобетонных конструкций, расположенных в поле тока от постороннего источника, и необходимость их защиты от электрокоррозии должны быть установлены: при проектировании — по результатам расчета плотности тока утечки с арматуры или по результатам электрических измерений потенциалов «арматура—бетон» и «арматура—земля», имеющихся на трассе (площадке) аналогичных подземных железобетонных конструкций зданий и сооружений; в период эксплуатации — по результатам электрических измерений.
6.2(2.66—2.70). Способы защиты железобетонных конструкций от коррозии блуждающими токами подразделяются на группы:
I — ограничение токов утечки, выполняемое на источниках блуждающих токов;
II — пассивная защита, выполняемая на железобетонных конструкциях;
III — активная (электрохимическая) защита, выполняемая на железобетонных конструкциях, если пассивная защита невозможна или недостаточна.
При проектировании железобетонных конструкций зданий и сооружений отделений электролиза и сооружений электрифицированного на постоянном токе рельсового транспорта следует предусматривать способы защиты от электрокоррозии I и II группы.
Мероприятия I группы по ограничению токов утечки выполняются на источниках блуждающих токов в соответствии с ГОСТ 9.015—74* и прил. 10 настоящего Пособия.
А. Мероприятия II группы защиты — пассивная защита железобетонных конструкций, зданий и сооружений отделений электролиза и сооружений электрифицированного на постоянном токе рельсового транспорта должна обеспечиваться:
применением марки бетона по водонепроницаемости не ниже W6;
исключением применения бетонов с добавками — электролитами, понижающими электросопротивление бетона, в том числе ингибирующими коррозию стали;
ограничением ширины раскрытия трещин не более 0,1 мм для предварительно напряженных конструкций и не более 0,2 мм для обычных конструкций;
назначением толщины защитного слоя, мм, бетона не менее:
а) для арматуры железобетонных конструкций отделений электролиза:
плоских и ребристых плит, стен, стеновых панелей . . . . . . . . . . 20
балок, ферм, колонн . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
фундаментных балок, фундаментов . . . . . . . . . . . . . . . . . . . . . . . 30
б) для арматуры железобетонных конструкций сооружений электрифицированного железнодорожного транспорта:
шпал . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
опор и фундаментов опор контактной сети . . . . . . . . . . . . . . . . . 16
в) для арматуры железобетонных конструкций объектов метрополитена:
монолитных и сборных обделок . . . . . . . . . . . . . . . . . . . . . . . . . . 30
шпал . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
При изготовлении железобетонных конструкций, предназначенных для укладки под землей или под водой, применение стальных фиксаторов положения арматуры не допускается. Следует применять фиксаторы из плотного цементно-песчаного раствора или из пластмассы.
Не допускается приемка в эксплуатацию подземных или подводных железобетонных конструкций, подвергающихся опасности электрокоррозии, с повреждениями защитного слоя бетона (отколы, выбоины) глубиной более 5 мм и длиной более 50 мм. На поврежденных участках необходимо восстановить защитный слой бетона.
В бетон конструкций, находящихся в поле тока от постороннего источника, не допускается вводить добавки хлористых солей, а в бетон предварительно напряженных конструкций, армированных сталью классов a т-iv, a т-v, a т-vi, a-V и A-VI, — добавки хлористых солей, нитратов и нитритов.
Б. Для защиты от электрокоррозии в железобетонных конструкциях отделений электролиза следует предусматривать электроизоляционные швы шириной не менее 30 мм.
В отделениях водных растворов устройство швов необходимо:
в перекрытиях под электролизеры и рабочих площадках для обслуживания электролизеров не реже, чем через каждые 24 м в обоих направлениях;
между перекрытием под электролизеры и примыкающими к нему железобетонными стенами, колоннами и перекрытиями других отделений;
в подземных конструкциях (ленточных фундаментах, фундаментных балках, каналах, коллекторах) на выходе из отделения.
Швы выполняются из электроизоляционных мастичных, листовых и рулонных материалов на основе битума (кроме рубероида), полиэтилена, полихлорвинилового пластиката и т. п., полимерраствора, в виде клеевых соединений монтажных стыков конструкций или в виде воздушных зазоров.
В отделениях электролиза расплавов устройство швов необходимо:
в надземных конструкциях, совмещая их с температурными швами;
в подземных конструкциях — не реже, чем через каждые 40 м и не менее одного между двумя продольными рядами электролизеров.
Швы выполняются из материалов на основе битума и т. п. или в виде воздушных зазоров.
В условиях эксплуатации воздушные зазоры должны содержаться в чистоте и ничем не перекрываться.
В. В отделениях электролиза водных растворов солей опоры под электролизеры, башмаки для железобетонных опор под электролизеры, балки под электролизеры, опорные столбы под шинопроводы, фундаменты под электролизеры, опорные балки и фундаменты под оборудование, соединяемое с электролизерами, рекомендуется предусматривать из полимербетона или сталеполимербетона.