СНиП 2.06.05-84 (1990), часть 5
5.9. Вместо грунтовых обратных фильтров допускается предусматривать при соответствующем обосновании обратные фильтры из пористого бетона и других пористых материалов.
5.10* Расчеты устойчивости откосов грунтовых плотин всех классов следует выполнять для круглоцилиндрических поверхностей сдвига. При наличии в основании или теле сооружения ослабленных зон, прослоек грунта с более низкими прочностными свойствами, при оценке устойчивости экрана или защитного слоя и т.д. следует выполнять расчеты для произвольных поверхностей сдвига.
При расчетах следует использовать методы, удовлетворяющие условиям равновесия призмы обрушения и ее элементов в предельном состоянии и учитывающие напряженное состояние сооружения и его основания. Применительно к конкретным геологическим условиям и конструкции плотины могут быть использованы при соответствующем обосновании проверенные практикой упрощенные методы расчета. При однородных характеристиках грунта и отсутствии фильтрационных сил можно пользоваться методами, предполагающими монолитную призму обрушения. В тех же условиях при плоской поверхности откоса и несвязном грунте достаточно оценивать устойчивость малого объема (частицы) грунта на его поверхности сопоставлением коэффициента внутреннего трения материала с крутизной откоса. Для расчета устойчивости откосов плотин I и II классов может быть применен метод, приведенный а рекомендуемом приложении 5*.
При расчетах устойчивости откосов грунтовых плотин всех классов, возводимых в северной строительно-климатической зоне, используя методы, удовлетворяющие условиям равновесия призмы обрушения и ее элементов в предельном состоянии, следует учитывать как напряженное, так и температурное состояние грунтов плотины и ее основания.
5.11 *. Устойчивость откоса плотины должна быть проверена по возможным поверхностям сдвига с нахождением наиболее опасной призмы обрушения, характеризуемой минимальным отношением обобщенных предельных реактивных сил сопротивления к активным сдвигающим силам.
Критерием устойчивости откосов плотины является соблюдение (для наиболее опасной призмы обрушения) неравенства
(7)
где F — расчетное значение обобщенного силового воздействия, определяемое с учетом коэффициента надежности по нагрузке g f (в зависимости от метода расчета устойчивости откосов F — равнодействующая активных сил или моментов этих сил относительно оси поверхности сдвига);
R — расчетное значение обобщенной несущей способности системы «сооружение — основание», определяемое с учетом коэффициента безопасности по грунту g g , т.е. обобщенное расчетное значение сил предельного сопротивления сдвигу по рассматриваемой поверхности;
g f , g n , g fc коэффициенты надежности по нагрузке, ответственности сооружения, сочетания нагрузок, определяемые по СНиП 2.06.01-86;
g g — коэффициент надежности по грунту, определяемый по СНиП 2.02.02-85;
g c — коэффициент условий работы.
При поиске опасной поверхности сдвига может быть использована зависимость для коэффициента устойчивости ks
(8)
Полученные расчетом значения коэффициента устойчивости при соответствующем сочетании нагрузок не должны превышать величины более чем на 10 %, если это не обусловлено особенностями сооружения.
Числовые значения коэффициентов g n , g c и g fc приведены в табл. 9 — 11.
Таблица 9
Класс сооружения |
I |
II |
III |
IV |
Значение g n |
1,25 |
1,20 |
1,15 |
1,10 |
Таблица 10
Сочетание нагрузок |
Основное |
Особое |
Строительного периода |
Значение g fc |
1,00 |
0,90 |
0,95 |
Таблица 11
Методы расчета |
Удовлетворяющие условиям равновесия |
Упрощенные |
Значение g c |
1,00 |
0,95 |
5.12*. При расчетах устойчивости откосов плотин необходимо рассматривать следующие случаи.
Для низового откоса:
а) первый расчетный случай (основной): а верхнем бьефе — нормальный подпорный уровень (НПУ), в теле плотины — установившаяся фильтрация; при наличии воды в нижнем бьефе глубину ее принимают максимально возможной при НПУ, но не более 0,2hi , где hi — высота откоса;
б) второй расчетный случай (основной) при открытых водосбросах (без затворов): подпорный уровень и уровень нижнего бьефа определяются максимальным расходом, относимым к основным сочетаниям нагрузок и воздействий;
а) третий расчетный случай (особый): в верхнем бьефе — форсированный подпорный уровень воды (ФПУ), в нижнем бьефе глубину воды принимают максимальной, соответствующей ФПУ.
Для верхового откоса:
а) первый расчетный случай (основной): максимальное возможное снижение уровня воды в водохранилище от НПУ или от подпорного уровня, соответствующего пропуску максимального расхода, относимого к основным сочетаниям воздействий, с наибольшей возможной скоростью, при этом учитывают фильтрационные силы неу-становившейся фильтрации;
б) второй расчетный случай (строительного периода): уровень воды в верхнем бьефе находится на самой низкой отметке, но не ниже 0,2hi , где — hi — высота откоса; уровень грунтовой воды в теле плотины принимают соответствующим установившемуся;
в) третий расчетный случай (особый): максимальное возможное снижение уровня воды в водохранилище от ФПУ с наибольшей возможной скоростью, при этом учитывают фильтрационные силы неустановившейся фильтрации.
Примечания: 1. Для земляных плотин с волногасящими откосами следует производить расчет устойчивости с учетом волнового воздействия (согласно рекомендуемому приложению 6*).
2. При расчете устойчивости откосов земляных намывных плотин необходимо учитывать фильтрацию из прудка при проектируемом его положении в период намыва плотины и насыщение водой грунтов откосов (расчетный случай строительного периода).
3. При расчете устойчивости откосов плотин в сейсмических районах сейсмические воздействия учитывают согласно СНиП II -7-81* .
Устойчивость верхового откоса плотины в условиях сейсмического воздействия следует проверять как для случая быстрого снижения уровня воды в водохранилище от МПУ до наиболее низкого эксплуатационного уровня, так и для случая продолжительного стояния НПУ (или ПУ, соответствующего пропуску расхода, относимого к основным воздействиям).
4. Если консолидация связных грунтов плотины и ее основания не завершается к моменту окончания строительства, в расчетах устойчивости откосов следует учитывать поровое давление как для строительного, так и для эксплуатационного случаев.
5. Для плотин с грунтовым экраном следует рассчитывать устойчивость экрана на откосе плотины и устойчивость крепления на экране. Для участков поверхности сдвига на контакте экрана и плотины или крепления экрана прочностные характеристики принимают для грунта экрана.
6. Расчет устойчивости боковых призм земляных намывных плотин с ядром из глинистого грунта надлежит выполнять с учетом порового давления в период консолидации ядра (расчетный случай строительного периода).
5.13 * При расчете устойчивости откосов плотин прочностные характеристики грунтов тела плотин III и IV классов следует принимать постоянными, а плотин I и II классов — переменными в зависимости от напряженного и температурного состояния грунта в зоне прохождения поверхности сдвига.
5.14*. Напряженно-деформированное и температурное состояния тела плотины из грунтовых материалов и ее основания следует учитывать в расчетах устойчивости откосов плотины, фильтрационной прочности на контакте водоупорных элементов с основанием, проверки трещиностойкости водоупорных элементов, прочности негрунтовых противофильтрационных устройств, анализа поведения плотины при проведении натурных исследований, а также для подбора материалов плотины.
5.15*. В расчетах напряженно-деформированного состояния плотин I и II классов следует, как правило, применять нелинейные модели, учитывающие пластические деформации грунта в предельном состоянии, при условии определения параметров деформирования испытанием образцов грунта в одометрах и стабилометрах. При этом размеры образцов должны отвечать зерновому составу грунта тела плотины и основания. Для крупнозернистого грунта допускается использовать модельный грунт, в расчетах необходимо учитывать поэтапность возведения плотины, скорость заполнения водохранилища, а для плотин, возводимых в северной строительно-климатической зоне, последовательность промораживания и оттаивания тела и основания плотины.
Для плотин III и IV классов допускается производить расчеты по модели линейно-деформированного тела.
5.16*. Расчет осадок тела и основания плотины следует производить для определения требуемого строительного подъема плотины, а также для уточнения объема работ по сооружению плотины. Для намывных плотин строительный подъем определяют согласно требованиям настоящего пункта и пп.5.17*, 5.18 независимо от запаса грунта на уплотнение в теле сооружения в процессе намыва, устанавливаемого в соответствии с требованиями СНиП 3.02.01-87.
Расчет осадок плотины следует производить в каждом характерном ее поперечном сечении по нескольким вертикалям, проходящим в элементах плотины из различных материалов (ядре, экране, призме и т.д.).
При расчете осадок основания и тела плотины следует соблюдать требования СНиП 2.02.02-85 и СНиП 2.02.04-88.
5.17*. Для плотин I и II классов расчет осадок и их изменения во времени следует производить на основании результатов экспериментальных исследований сжимаемости грунтов с учетом напряженно-деформированного состояния плотин Поровое давление, ползучесть грунта, его просадочность и набухание при повышении влажности в период эксплуатации необходимо учитывать в зависимости от их наличия.
Напряженно-деформированное состояние плотин, возводимых в северной строительно-климатической зоне, следует определять с учетом температурного режима грунтов плотины и ее основания.
Для плотин III и IV классов допускается производить расчет осадок по приближенным зависимостям с использованием значений модулей деформаций по СНиП 2.02.02-8 5.
5.18. Поровое давление следует учитывать в расчетах в случаях, когда максимальное значение коэффициента порового давления ru,max определяемое отношением порового давления u к максимальному значению приложенного напряжения s , превышает нормативное значение коэффициента порового давления run = 0,1.
Величину ru,max следует определять по формуле
ru,max = ruc ruo (9)
используя известные значения ruc — коэффициента порового давления, определяемого по схеме закрытой системы (без учета оттока воды из грунта), и ruo — коэффициента порового давления, определяемого по схеме открытой системы (с учетом оттока воды из грунта).
Величины ruc и ruo следует устанавливать по графикам рекомендуемого приложения 1.
5.19* Горизонтальные смещения плотин определяют путем расчета напряженно-деформированного состояния с учетом изменения сжимаемости грунтов при повышении их влажности, а в северной строительно-климатической зоне — при изменении их температурно-влажностного состояния.
Для плотин II IV классов допускается оценивать горизонтальные смещения на основе аналогов плотин, построенных в подобных условиях и такой же конструкции. Для предварительных оценок горизонтальных смещений гребня плотины следует принимать их равными осадке гребня пос ле наполнения водохранилища.
5.20* При проектировании плотин с экраном или ядром (диафрагмой) необходимо учитывать деформации береговых склонов.
В плотинах с негрунтовыми экранами и диафрагмами надлежит рассчитывать продольные и поперечные смещения экранов и диафрагм. Напряженно-деформированное состояние диафрагмы (экрана) следует рассчитывать с учетом трения грунта по поверхности диафрагмы (экрана), схем опирания устройства на основание и разрезки деформационными швами.
5.21. Плиты крепления откосов плотин следует проверять на прочность от воздействия давления волн и льда в соответствии с требованиями СНиП 2.06.04-82*.
5.22* Трещиностойкость земляных плотин и водоупорных элементов каменно-земляных плотин следует определять путем расчета их напряженно-деформированного состояния. При этом следует учитывать поровое давление, а для плотин I и II классов — изменение сжимаемости и ползучести в соответствии со свойствами грунтов, слагающих тело плотины и основания. В северной строительно-климатической зоне расчет напряженно-деформированного состояния плотины необходимо выполнять с учетом изменения ее тем-пературно-влажностного состояния в ходе строительства.
5.23 *. При проектировании плотин из грунтовых материалов, возводимых в северной строительно-климатической зоне, следует выполнять:
для талых плотин — расчеты температурного режима в ходе строительства и эксплуатации с определением положения границ зон талых и мерзлых грунтов, в теле, основании и береговых примыканиях плотины на любой задаваемый период до установления квазистационарного температурного состояния плотины;
для мерзлых плотин с мерзлотными завесами в теле и основании — расчеты толщины мерзлотной завесы, образующейся вокруг линейной системы СОУ или замораживающих колонок за первый и последующие сезоны работы СОУ;
для талых и мерзлых плотин — расчеты температурного режима ложа и бортов водохранилища и русла в нижнем бьефе вблизи плотины на период до установления квазистационарного состояния.
ПРИЛОЖЕНИЕ 1
Рекомендуемое
УСЛОВИЯ НЕОБХОДИМОСТИ УЧЕТА ПОРОВОГО ДАВЛЕНИЯ
1. Поровое давление необходимо учитывать при расчетах деформаций основания и тела плотины из грунтовых материалов, а также при определении ее устойчивости, если коэффициент порового давления ru,max к концу ее возведения превышает величину run в какой-либо части тела плотины и ее основания.
Указанные условия определяются критерием
ru,max = ruc ruo
2. Величину ruc находят по графикам черт. 1 в зависимости от напряжения s , равного давлению вышележащего грунта на горизонтальную площадку, и параметра П .
Черт. 1. H омограмма для определения коэффициента
парового давления ruc
Параметр П определяют по графикам черт. 2 для начального значения степени влажности грунта Sr,in и отношения , где ein — начальное значение коэффициента пористости; аmax — максимальное значение коэффициента уплотнения, найденного по компрессионной зависимости.
Черт. 2. Номограмма для определения параметра П
3. Величину ruo определяют по графику черт. 3 в зависимости от коэффициента степени консолидации , равного:
,
где cv,min — наименьшее значение коэффициента консолидации;
t — время роста нагрузки s до наибольшего значения s max (черт. 4, а, б);
d = h (черт, 4, a); (черт. 4, б);
t — время возведения плотины (черт. 4, в, г);
(черт, 4, в);
(черт. 4, г);
Черт. 3. График зависимости коэффициента
порового давления ruo от
4. При оценке величины ru,max рекомендуется вначале определить ruc . Если ruc £ run , то поровое давление можно не учитывать.
Черт. 4. Различные случаи определения коэффициента
порового давления ruo
а — слой на водоупоре; б — слой на дренаже; в — однородная плотима; г — ядро каменно-земляной плотины; 1 — нагрузка; 2 — основание; 3 — дренаж; 4 — ядро; 5 — водоупор
В тех случаях, когда ruc > run , необходимо определить величину ruo , а затем ru,max = ruc ruo .
Величину cv,min рекомендуется определять экспериментально.
5. В случае неоднородного грунта следует принимать для расчета характеристики грунта с наибольшими величинами Sr,in и а .
ПРИЛОЖЕНИЕ 2*
Обязательное
КОНТРОЛЬ ЗА СОСТОЯНИЕМ СООРУЖЕНИЙ И ОСНОВАНИЙ В ПЕРИОД СТРОИТЕЛЬСТВА И ЭКСПЛУАТАЦИИ
1. В проектах плотин I— III классов необходимо предусматривать установку контрольно-измерительной аппаратуры (КИА) для проведения натурных наблюдений за работой и состоянием сооружений и их оснований как в процессе строительства, так и в период эксплуатации, используя результаты этих наблюдений для оценки надежности объекта, своевременного выявления дефектов, назначения ремонтных мероприятий, предотвращения аварий и улучшения условий эксплуатации. Натурные наблюдения могут быть контрольными и специальными.
2* Контрольные натурные наблюдения следует проводить в целях изучения основных параметров работы плотины и основания, комплексного анализа их состояния и оценки эксплуатационной надежности. Состав и объем контрольных наблюдений следует назначать в зависимости от класса плотины, ее конструктивных особенностей, геологических, геокриологических, гидрогеологических, климатических, сейсмических условий, а также условий возведения и требований эксплуатации.
При наблюдениях, как правило, следует определять:
а) отметки уровней воды верхнего и нижнего бьефов;
б) положение депрессионной поверхности в теле плотины и берегах;
в) качество работы дренажа и противофильтрационных устройств;
г) расходы воды, фильтрующейся через плотину и ее основание, а также в берегах и местах примыкания плотины к бетонным сооружениям;
д) мутность, температуру профильтровавшейся воды, а при необходимости и ее химический состав;
е) поровое давление в глинистых элементах тела плотины и основания;
ж) осадку тела плотины, основания и береговых примыканий;
з) горизонтальные смещения гребня, берм и противофильтрационных устройств;
и) напряжения и деформации в теле плотины, противофильтрационных устройствах, а также в основании;
к) сейсмические колебания;
л) ледовые воздействия.
В состав контрольных наблюдений следует включать систематические визуальные наблюдения за состоянием креплений и местными деформациями откосов и гребня плотины, водосбросных кюветов, появлением выходов профильтровавшейся воды, размывами откосов и берегов, появлением наледи, заилением и зарастанием дренажных траншей.
В северной строительно-климатической зоне, помимо указанного состава наблюдений, следует определять температуру воды в верхнем бьефе, включая температуру придонного слоя воды в водохранилище, и температуру грунтов тела и основания плотины, а также проводить наблюдения за работой и состоянием СОУ.
3. Для плотин IV класса и их оснований следует предусматривать комплексные визуальные наблюдения. Инструментальные наблюдения следует, как правило, ограничивать наблюдениями за смещениями, осадкой, положением депрессионной поверхности и фильтрационными расходами. При соответствующем обосновании допускается не проводить инструментальных наблюдений.
4. Специальные натурные наблюдения проводят при соответствующем обосновании в целях получения данных для уточнения методов и результатов расчета и модельных исследований, обоснования конструктивных решений, методов производства работ и улучшения условий эксплуатации плотин.
5. Проект натурных наблюдений должен включать:
а) программу наблюдений с изложением цели, задач, состава, объема, методики с указанием сроков, номенклатуры и технических характеристик КИА;
б) общие схемы и рабочие чертежи размещения и монтажа КИА в плотине, основании, береговых примыканиях и отдельных элементах, прокладки и коммутации кабельных линий и устройства измерительных пультов;
в) рабочие чертежи закладных деталей и монтажных приспособлений для установки КИА;
г) спецификации устанавливаемой КИА, вторичных приборов, вспомогательного оборудования, кабелей;
д) инструкцию по установке КИА, прокладке кабельных линий и оборудованию пультов;
е) смету на приборы, вспомогательное оборудование, кабельную продукцию, проведение наблюдений, обработку и анализ результатов.
Номенклатуру, число приборов и их местоположение в теле плотины, основании, береговых примыканиях и отдельных элементах сооружения назначают, исходя из состава задач и объема наблюдений и исследований. При этом следует стремиться к автоматизации всех наблюдений.
6. В проект должны быть включены требования по периодичности проведения, обработке и систематизации натурных наблюдений за работой и состоянием сооружения и его основания как в период строительства так и в период эксплуатации.
7. При расчетах плотин всех классов должны устанавливаться предельно допустимые значения параметров состояния плотин и их оснований, контролируемые натурными наблюдениями.
Значения предельно допустимых параметров в виде отдельной таблицы включают в проект.
8. Предельно допустимые значения параметров состояния плотины принимаются равными расчетным значениям для основного и особого сочетаний нагрузок и могут уточняться в процессе строительства и эксплуатации.
ПРИЛОЖЕНИЕ 3*
Рекомендуемое
РАСЧЕТ НОРМЫ ОТМЫВА ГРУНТА ПРИ ВОЗВЕДЕНИИ ЗЕМЛЯНЫХ НАМЫВНЫХ ПЛОТИН
Норму отмыва устанавливают по характеристике состава карьерного грунта (грунта выемки) с учетом принятой технологии намыва земляного сооружения.
Грунты песчано-гравийных и песчаных карьеров в зависимости от показателей их гранулометрического состава и технологии намыва делятся на пять групп (см. таблицу).
Номер |
Грунт |
Вид технологии |
Содержание фракций в составе грунта, % |
|
k 60, 10 |
d90 , мм |
|
группы грунта |
|
намыва |
d=0, 25 0, 10 мм |
d > 2 мм |
|
|
|
1 |
Разнозернистые пески с гравием |
Двусторонний с технологическим прудком |
<50 |
>5 |
>1 |
2,5—300 |
>2 |
2 |
Среднезернистые пески |
То же |
<50 |
<5 |
>1 |
<5 |
<2 |
3 |
Мелкозернистые пески |
» |
>50 |
|
|
<5 |
|
4 |
Тонкозернистые и пылеватые пески |
» |
<50* |
|
<1 |
>5* |
|
5 |
Разнозернистые пески с гравием, среднезернистые и мелкозернистые пески |
Односторонний со свободным откосом |
|
|
|
|
|
* В большинстве случаев.
Для каждой группы грунтов и принятой технологии намыва сооружения норму отмыва НО определяют по следующим формулам в процентах к объему намываемого сооружения.
1-я группа: разнозернистый песок с гравием, двусторонний намыв—
НО = 0,1 [d = 0,25 — 0,10 мм] % + 0,35 [d = 0, 10 — 0,05 мм] % +
+ 0,9 [d = 0,05 — 0,01 мм]% + 0, 9 [ d = 0,01 — 0,005мм]% + 1 [d < 0,005 мм]%;
2-я группа: среднезернистый песок, двусторонний намыв —
НО = 0,025 [d = 0,25 — 0,10 мм] % + 0,35 [d = 0, 10 — 0,05 мм] % + 0,8 [d = 0,05 — 0,01 мм]% + 1 [d < 0,01 мм]%;
3-я группа: мелкозернистый песок, двусторонний намыв —
НО = 0,05 [d = 0,25 — 0,10 мм] % + 0,3 [d = 0, 10 — 0,05 мм] % +
+ 0,9 [d = 0,05 — 0,01 мм]% + 1 [d < 0,01 мм]%;
4-я группа: мелкозернистые и пылеватые пески, двусторонний намыв —
НО = 0,11 [d = 0, 10 — 0,05 мм] % + 0,5 [d = 0,05 — 0,01 мм]% +
+ 0, 6 [ d = 0,01 — 0,005мм]% + 0,9 [d < 0,005 мм]%;
5-я группа: разнозернистые, среднезернистые и мелкозернистые пески, односторонний намыв со свободным откосом —
НО = 0,15 [d = 0,25 — 0,10 мм] % + 0,5 [d = 0, 10 — 0,05 мм] % +
+ 0,9 [d = 0,05 — 0,01 мм]% + 1 [d < 0,01 мм]%;
Примечания: 1. Отмыв грунта при одностороннем намыве тонкозернистых и пылеватых грунтов, а также при намыве грунтов в воду без устройства обвалования устанавливают при проектировании технологических схем намыва сооружений с использованием аналогов или результатов опытного намыва.
2. В случаях, когда проектом установлена целесообразность использования для намыва сооружений карьерных грунтов или грунтов полезных выемок без предварительного удаления вскрышного слоя, средневзвешенный гранулометрический состав, по которому определяют норму отмыва, устанавливают по всей толще карьера (выемки) — от поверхности до подошвы забоя.
ПРИЛОЖЕНИЕ 4
Рекомендуемое
РАСЧЕТЫ ГРАНИЦ ЗОН ФРАКЦИОНИРОВАНИЯ И ОСРЕДНЕННОГО ЗЕРНОВОГО СОСТАВА НАМЫТОГО ГРУНТА В ПОПЕРЕЧНОМ СЕЧЕНИИ ПЛОТИНЫ
1. Расчет границ зон фракционирования и осредненного зернового состава намытого грунта в поперечном сечении выполняют для неоднородных плотин.
Фракционирование грунта — процесс, положенный в основу конструкции намывных плотин и проявляющийся в раскладке зерен грунта по крупности по длине откоса намыва с постеленным уменьшением средней крупности намытого грунта по мере удаления от выпуска пульпы из распределительного пульпопровода.
2. Для неоднородных плотин с ядром, намываемых из песчано-гравийного грунта, содержащего пылеватые и глинистые фракции (см. черт. 3, в разд. 3), расчет границ зон фракционирования выполняют по формулам:
расстояние от откоса плотины до внутренней границы боковой зоны X1
(1)
где — содержание всех фракций крупнее 2 мм в составе карьерного грунта, %;
L — расстояние от откоса до оси плотины;
расстояние от откоса плотины до границы ядра X2
(2)
где — содержание всех фракций крупнее 0,1 мм в составе карьерного грунта, %.
3. Для неоднородных плотин с центральной зоной, намываемых из песчано-гравийных грунтов (см. черт. 3, г , разд. 3) расчет расстояния от откоса плотины до границы центральной зоны X2 выполняют по формуле
(3)
где — содержание всех фракций крупнее 0,25 мм в составе карьерного грунта, %.
Примечание к пп. 2 и 3. В расчет вводят осредненный состав карьерного грунта.
4. Осредненный зерновой состав намытого грунта в пределах выделенных зон фракционирования определяют с помощью графиков черт. 1 — 5, построенных в результате обработки данных геотехнического контроля намыва различных плотин,
где — процентное содержание составляющих частиц;
— крупность составляющих частиц намытого грунта;
— средневзвешенная крупность карьерного грунта:
, (4)
где — среднеарифметическое значение крупности i -й стандартной фракции в составе карьерного грунта;
— процентное содержание i -й стандартной фракции;
90 — суммарное содержание учитываемых фракций в составе карьерного грунта, %.
Черт. 1. График зависимости . Однородные песчаные плотины
Черт. 2. График зависимости. Неоднородные плотины из мелкого песчано-гравийного грунта с центральной песчаной зоной
I - боковая зона; II - центральная зона
Черт. 3. График зависимости . Неоднородные плотины из крупного песчано-гравийного грунта с центральной песчаной зоной
I - боковая зона; II - центральная зона
Черт. 4. График зависимости . Гравийные плотины с ядром высотой менее 30 м
I - боковая зона; II - ядро
Черт. 5. График зависимости . Гравийные плотины с ядром высотой более 30 м
I — боковая зона; II — промежуточная зона; III — ядро
Примечание. При вычислении отбрасываются все фракции мельче , и крупнее , где и — крупность частиц, соответствующая обеспеченности 5 и 95 % по массе в составе карьерного грунта.
Отношение — снимают с осредненной кривой графиков для разной обеспеченности (10 %, 20 %,...). Величину di (d10 , d20 , ... ) определяют умножением указанного отношения на заданную величину по формуле
(5)
С помощью полученных значений di строят кривую зернового, состава намытого грунта по каждой зоне.
ПРИЛОЖЕНИЕ 5*
Рекомендуемое
РАСЧЕТ УСТОЙЧИВОСТИ ОТКОСОВ ПО СПОСОБУ НАКЛОННЫХ СИЛ ВЗАИМОДЕЙСТВИЯ
Согласно п. 5.10* настоящего СНиП в числе рекомендуемых методов расчета устойчивости откосов грунтовых плотин названы методы, оперирующие с расчлененной на вертикальные элементы призмой обрушения и с произвольной или круглоцилиндрической поверхностью сдвига, удовлетворяющие условиям равновесия в предельном состоянии.
В качестве таковых могут быть использованы методы, основанные на гипотезе наклонных сил взаимодействия между элементами призмы обрушения.
Угол наклона к горизонту b этих сил может быть определен из условий равновесия призмы обрушения в предельном состоянии, которое достигается пропорциональным изменением характеристик прочности грунтов от расчетных значений tgj , с до критических tgj k , сk .
При произвольной поверхности сдвига для оценки устойчивости призмы обрушения сопоставляют проекции равнодействующих активных сил FE и сил сопротивления RE на направление сил взаимодействия. При круглоцилиндрической поверхности сдвига можно сопоставлять как моменты этих равнодействующих Fo , Ro относительно оси поверхности сдвига, так и их проекции. Критерием устойчивости призмы обрушения является соотношение
(1)
где коэффициенты сочетаний нагрузок, условий работы, надежности по ответственности сооружения.
Откос устойчив, если обеспечена устойчивость призмы обрушения с наиболее опасной поверхностью сдвига.
Проекции равнодействующих определяют из условия равновесия элементов призм обрушения по формулам (см. схему):
(2)
где Q = qdx — равнодействующая активных сил, действующих на элемент призмы обрушения;
d — угол отклонения силы Q от вертикали;
а — угол наклона элемента поверхности сдвига к горизонту;
С = cds — сила сцепления, действующая на элемент поверхности сдвига.
Схема сил, действующих на элемент призмы обрушения
Моменты равнодействующих определяют по формулам:
(3)
где r — радиус поверхности сдвига;
b — возвышение точки приложения силы Q над поверхностью сдвига.
Угол b в обоих случаях допустимо определять по приближенной зависимости
(4)
Устойчивость откоса в предположении кругло-цилиндрической поверхности сдвига можно проверять по формулам (2) или (3). Отношения и — разные механические понятия, поэтому оценки устойчивости по ним получаются разными. Однако эти оценки совпадают при — = 1 и достаточно близки при — < 1,3, так что разногласий в суждении об устойчивости откоса не возникает.
Если принять в качестве универсальной оценки устойчивости отношение , т.е, подобрать такие значения характеристик прочности, при которых Ro = Fo и RE = FE , результаты расчета обоими способами должны совпадать.
Такой расчет может служить контролем правильности определения угла b , т.е. соблюдения условий равновесия призмы обрушения в предельном состоянии, для найденной наиболее опасной поверхности сдвига.
Влияние воды, насыщающей откос, допускается учитывать двумя способами:
а) первый — вес грунта в пределах каждого элемента определяют с учетом ее капиллярного поднятия, а по контуру элемента (поверхности откоса, поверхности сдвига и плоскостям раздела между элементами) определяют давление воды фильтрационным расчетом;
б) второй — вес грунта элемента определяют с учетом его взвешивания водой; на уровне ее поверхности к грунту прилагают капиллярные силы и к насыщенному водой объему грунта элемента прилагают фильтрационные силы, определяемые расчетом.
Оба способа дают, естественно, тождественные результаты и распространяются на неустановившуюся фильтрацию, в том числе при незавершенной консолидации грунта. При вычислении активной силы FE и активного момента Fо давление воды по плоскостям раздела можно не учитывать, в сумме оно равно нулю. При вычислении Fо можно не учитывать также давление воды по круглоцилиндрической поверхности сдвига, его момент равен нулю.