ВСН 126-90, часть 6

После определения оптимального количества добавки производится проверка прочности цементно-песчаного раствора. Прочность определяется на образцах-кубиках размерами 3х3 x 3 см, приготовленных из цементно-песчаного раствора состава 1 : 3 (цемент: песок по массе). Ввиду того что цементно-песчаный раствор с добавкой быстро схватывается, образцы должны приготовляться из небольших порций смеси. Навески (цемента 50 г, песок 160 г) и добавка перемешиваются в металлической или фарфоровой чаше. Затем в смесь вводится вода в количестве 20 25 см3 что соответствует водоцементному отношению 0,4—0,5.

После перемешивания раствор быстро (до начала схватывания) укладывается в формы на один час, после чего образцы распалубливаются.

Количество образцов назначается из расчета на проведение 5 серий испытаний в возрасте 3 ч, 1, 3, 7 и 28 суток. Одновременно изготавливаются и испытываются контрольные образцы из цементно-песчаного раствора аналогичного состава без добавки.

Прочность образцов с добавкой в возрасте 1, 3, 7 и 28 суток не должна быть ниже прочности контрольных образцов того же состава

Пример. Расчет состава сухой смеси, определение режима нанесения и ориентировочного состава набрызгбетона

Исходные данные. 1. Характеристики материалов: цемента портландцемент марки 400, ПГЦТ = 28%; песка кварцевого — g п = 2,65; g нас × п = 1,56; = 3,27; содержание пыли 3%, глины и ила 2%; содержание органических примесей в пределах нормы; щебня g щ =2,66 g нас × щ = 1,38; НКЩ = 15 мм. Гранулометрические составы песка и щебня представлены в табл. 7 и 8.

Таблица 7

Наименование остатков на

Гранулометрическнй состав песка, мм, для сит размерами, мм

ситах, % от массы

2,5

1,25

0 ,63

0 ,315

0,14

Поддон

Частные

25

26

19

16

9

5

Полные

25

51

70

86

95

100

Таблица 8

Наименование остатков на

Гранулометрический состав щебня, мм для сит размерами, мм

ситах, % от массы

15

10

5

Поддон

Частные

5

57

37

1

Полные

5

62

99

100


2. Производственные условия: дозировка материалов по массе; общая культура производства низкая; коэффициент вариации V п = 16%; производственный коэффициент К=0,91.

3. Применяемое оборудование: набрызгбетон-машина СБ-67 производительностью 4 M 3 /4; длина материального шланга 40 м; диаметр шланга 50 мм; камера смешения отнесена от сопла на 4 м; вода подается водяным насосом.

Задание. Подобрать состав набрызгбетона со следующими свойствами: В 22,5 (средняя прочность при коэффициенте вариации V п =13,5%, =30,4 МПа); F 300; W6 (для вторичной обделки), расчетная толщина d = 15 см.

Решение. 1. Определяем водоцементное отношение по формуле (9) , а значение А по табл. 2.

2. Уточняем водоцементное отношение.

Из условий службы бетона по водонепроницаемости В/Ц < 0,55. В зависимости от марки бетона по морозостойкости для F 300 В/Ц < 0,5. Принято наименьшее значение В/Ц = 0,475.

3. Определяем расход воды в зависимости от крупности заполнителя и жесткости набрызгбетонной смеси по рис. 1.

Исходя из того, что оптимальная жесткость набрызгбетонной смеси равна 20 с, крупность щебня 5 15 мм, расход воды равен 175 л/м3 .

Уточняем расход воды в зависимости от вида применяемых материалов по табл. 4.

л.

Принят расход поды В = 178 л/м3 .

4. Определяем расход цемента на 1 м3 набрызгбетона.

кг/м3 .

Тогда количество на 1 м3 сухой смеси определяем по формуле (5).

.

5. Определяем соотношение между песком и щебнем (долю песка в смеси заполнителей r см ) в зависимости от марки цемента, модуля крупности песка Мк и необходимой прочности набрызгбетона, а также с учетом коэффициента производственных условий К по рис. 2.

Для МПа, Мц = 400, Мк = 3,27 r = 0,7.

6. Расход песка определяем из условия

Псм = ( g c м Цc м )r см = (1440—313) × 0,7=789 кг/м3

7. Количество щебня в смеси будет

Щсм = g см  — Цсм — Псм = 338 кг/м3

Исходный состав на 1 м3 сухой смеси, кг/м3 :

Цсм = 313; Псм = 789; Щсм = 338.

8. Выбор оптимального режима нанесения набрызгбетона: для материального шланга длиной 40 м и диаметром 50 мм давление в набрызгбетон-машине определяется согласно п. 3.55:

Рмм = 0,1+0,0022 × 40 + 0,007 × 2 + 0,04 × 2 = 0,28 МПа.

Расстояние от сопла до набрызгиваемой поверхности определяется в соответствии с п. 3.56:

(Ц + П) : Щ = (313 + 789) : 338 = 3,26.

Оптимальное расстояние нанесения 0,7 м.

9. Расход воды при подаче насосом при набрызгбетонированин назначается в зависимости от водоцементного отношения, расхода цемента и производи-тельности набрызгбетон-машины. При производительности набрызгбетон-машины П = 4 м3 смеси/ч или 0,067 м3 /мин при расходе цемента Цсм = 313 кг/м3 производительность по цементу равна

П= 0,067 × 313 = 21 кг/мин.

Необходимый расход воды будет

Всм = П = 21 × 0,475 = 10 л/мин.

10. Определяем расход материалов для получения на 1 м3 набрызг-бетона в килограммах:

= 313 · 1,28 = 401;

= 789 · 1 ,7 = 1341;

= 338 · 1,4 = 473.

11. Определение ориентировочного состава набрызгбетона:

по рис. 2 определяем изменение состава в процессе набрызгбетонирования: r исх = 0,7; r нб = 0,81.

В набрызгбетоне:

цемента ...... ......... Цнб = 401 · 1,7=532 кг/м3 ;

воды ....... .......... Внб = 532 (0,475 — 0,01) = 247 л/м3 ;

песка ....... .......... Пнб = (2272 532 247) · 0,81 = 1209;

щебня .... ............ Шнб = 2272 — 532 — 247 1209 = 284 кг/м3 .



Приложение 8

Рекомендуемое

МЕТОДИКА ПРИГОТОВЛЕНИЯ И ИСПЫТАНИЯ ОБРАЗЦОВ ИЗ НАБРЫЗГБЕТОНА

Набрызгбетонные образцы получают из специально приготовленных плит большого размера.

Плиты изготовляют в деревянных ящиках размерами 50 х 50 х 12 см. Крайние части плиты с нарушенной структурой спиливают, а из средней выпиливают 9 кубиков размерами 10 х 10 х 10 см, используемых для испытания на сжатие, осевое растяжение и морозостойкость. Испытания проводятся в соответствии с ГОСТ 101080—78, ГОСТ 18105—86. Допускается получение образцов из набрызгбетона в виде кернов диаметром 75 — 135 мм, выбуриваемых с помощью станка вращательного бурения с кольцевой коронкой.

Выпиливание и выбуривание образцов производят после того, как набрызгбетон наберет достаточную прочность (7 суток и более).

Для достижения сопоставимости результатов испытаний образцов, размеры или формы которых нестандартны, со стандартными образцами необходимо вводить поправочные коэффициенты, приведенные в таблице.

Вид образцов

Размер грани или диаметр, см

Переходный коэффициент

Кубики

7

0,75


10

0,85


15

0,90


20

1,00


30

1,10

Цилиндр (керн)

h=d

1,25

То же

h= 2d

1,80

Для испытания на водонепроницаемость по ГОСТ 12730,5—84 применяют керны из набрызгбетона диаметром и длиной 15 см.

Возможно проведение испытаний по упрощенной методике с изготовлением образцов из набрызгбетона в виде плит размерами 70 х 40 х 18 см с тремя цилиндрическими полостями диаметром 36 мм. Образец изготовляют в деревянной форме, к днищу которой прикреплены три металлических вкладыша, образующие полости. При испытаниях в полости подается вода через специальные штуцеры. Режим испытаний устанавливают в соответствии с ГОСТ 12730,5—84.

При возведении тоннельных обделок из набрызгбетона для определения качества материала в процессе производства работ рекомендуется определять сцепление набрызгбетона с породой путем отрыва образцов при помощи сетчатой рамки (рис. 1) или прибора конструкции ЛИИЖТа (рис. 2), а в слабых породах прибора конструкции НИИСПа Госстроя УССР (рис. 3).

При испытаниях с помощью сетчатой рамки (см. рис. 1) образцы изготовляют следующим образом. Па выбранный относительно ровный участок поверхности выработки наносят слой набрызгбетона толщиной 2 — 3 см. В этот слой втапливают сетчатую рамку. Затем наносят слой набрызгбетона толщиной 8 10 см. Через 1 1,5 ч после этого образец оконтуривают ручным зубилом. Применять для этой цели механизированный инструмент не рекомендуется, так как можно повредить образец.

Отрывая образцы домкратом с использованием опорного приспособления, определяют величину сцепления с учетом особенностей данной поверхности (шероховатости, микротрещиноватости и т. п.). Для более разносторонней оценки величины сцепления производят серию контрольных покрытий набрызгбетоном не на поверхности выработки, а на специально подобранных монолитных блоках породы.

Описанная методика позволяет определить сцепление в любом возрасте набрызгбетона, начиная с нескольких часов после нанесения.



Рис. 1. Приспособление для определения сцепления набрызгбетона:

а опорное приспособление; б рамка

Уменьшить трудоемкость испытаний на сцепление в натурных условиях помогает прибор, разработанный в Ленинградском институте инженеров железнодорожного транспорта. Прибор состоит из двух колец наружного и внутреннего (см рис. 2). Вставленные одно в другое кольца постепенно вдавливают вращением и слой свежеуложенного набрызгбетона и оставляют в нем до полного схватывания материала. Диаметр внутреннего кольца 100 —150 мм, сцепление определяют путем отрыва внутреннего кольца гидродомкратом, опирающимся на внешнее кольцо.

Вследствие большого сцепления набрызгбетона с внутренним кольцом, имеющим спиральную нарезку, отрыв происходит но контакту с породой.



Рис. 2 . Прибор для определения сцепления набрызгбетона с грунтовой поверхностью:

1 опорный столик: 2— захват; 3— внутреннее кольцо; 4 — штифт; 5 — уплотняющая шайба;

6— фиксирующее кольцо; 7 — наружное кольцо



Рис. 3. Прибор для определения сцепления набрызгбетона со слабой породой:

1 —динамометр; 2— тяги; 3 —набрызгбетон; 4— порода; 5 — фиксирующие винты

При использовании прибора НИИСПа Госстроя УССР (см. рис. 3) для определения сцепления набрызгбетона со слабыми породами производят отбор образцов породы при помощи компрессионных колец для испытания грунтов, вдавливаемых в породу. Компрессионные кольца с отобранными образцами породы закрывают крышками и помещают в специальный прибор так, чтобы они открытой лицевой стороной были прижаты по контуру к отверстиям в панели прибора. Затем на панель с образцами наносят набрызгбетон и после схватывания динамометром определяют усилие отрыва породы от набрызгбетона. Во всех случаях следует испытывать не менее трех образцов-близнецов одного возраста, а сами испытания проводить непосредственно на месте производства работ.


Приложение 9

Обязательное

ХАРАКТЕРИСТИКИ БЕТОНА

(извлечение из СНиП 2.03.01—84)

Таблица 1

Расчетное сопротивление бетона для предельных

состояния первой группы Rb , и Rbt , МПа,

при классе бетона по прочности на сжатие

Вид сопротивления

Бетон

В25

В30

В35

В40

В45

Сжатие осевое (призменная прочность) Rb

Тяжелый и мелкозернистый

14,5

17,0

19,5

22,0

25,0



Легкий

14,5

17,0

19,5

22,0

Растяжение осевое Rbt

Тяжелый

1,05

1,20

1,30

1,40

1,45



Мелкозернистый групп:

Aк > 2)



1,05



1,20



1,30



1,40





Б (Мк £ 2)

0,90

1,00



Легкий при

мелком заполнителе: плотном




1,05




1,20




1,30




1,40





пористом

0,90

1,00

1,10

1,20


Таблица 2

Расчетные сопротивления бетона для предельных состояний

второй группы Rb ,ser и Rbt,ser , МПа,

при классе бетона по прочности на сжатие

Вид сопротивления

Бетон

В25

B30

В35

В40

В45

Сжатие осевое (призменная прочность) Rb,ser

Тяжелый мелкозернистый

18,5

22,0

25,5

29,0

32,0


Легкий

18,5

22,0

25,5

29,0

Растяжение

Тяжелый

1,60

1,80

1,95

2,10

2,20

осевое

Rbt.ser

Мелкозернистый групп:

Aк > 2)

1,60

1,80

1,95

2,10


Б (Мк £ 2)

1,35

1,50



Легкий при мелком заполнителе: плотном




1,60




1,80




1,95




2,10





пористом

1,35

1,50

1,65

1,80





Таблица 3

Начальные модули упругости бетона при сжатии и растяжении, МПа,

при классе бетона по прочности на сжатие

Бетон

В25

B30

B35

В40

В45

Тяжелый естественного твердения

30,0

32,5

34,5

36,0

37,5

Мелкозернистый естественного твердения групп:

Aк > 2)



24,0



26,0



27,5



28,5



Б (Мк £ 2)

21,5

23,0

Легкий поризованный марки по средней плотности Д:

1600



16,5



17,5



18,0





1800

18,5

19,5

29,5

21,0

2000

21,0

22,0

23,0

23,5


Приложение 10

Справочное

СВЕДЕНИЯ ОБ АЛГОРИТМАХ И ПРОГРАММАХ РАСЧЕТА КРЕПИ ТОННЕЛЬНЫХ ВЫРАБОТОК

пп

Название программы

Авторы алгоритма и программы

Язык программирования

Тип

ЭВМ

Краткая характеристика программы

Организация—держатель программы

1

Расчет обделок не кругового поперечного сечения

Н. Н. Фотиева

В. Л. Кипенев

А. А. Ланда

ФОРТРАН

ЕС

Определение напряженного состояния монолитных обделок некругового очертания. Расчет основан на решении плоской контактной задачи о равновесии кольца в упругой среде

Ленметрогипротранс

2

Расчет многослойных и комбинированных обделок кругового очертания

Н. С. Булычев

Е. Е. Левин

А. А. Ланда

ФОРТРАН

ЕС

Расчет сборной или монолитной трехслойной обделки кругового очертания методами теории упругости

То же

3

Крепь

Б. 3. Амусин

Н. С. Булычев

Н. А. Романова

ФОРТРАН

ЕС

Расчет обделки подземной выработки некругового очертания замкнутой, незамкнутой монолитной, шарнирной или сборной при условии сцепления или проскальзывания по контакту и с возможной потерей устойчивости. Расчет проводится по методу начальных параметров

4

Комбинированная крепь

Д. И. Колин

Л. Н. Колина

АЛГОЛ-60

ЕС

Определение оптимальных параметров комбинированной крепи из анкеров и набрызгбетона по критериям минимума себестоимости и трудовых затрат при возведении крепи

ЦНИИС

5

Недра”

Б. 3. Амусин

К. А. Ардашев

Ю. М. Васинский

ФОРТРАН

ЕС

Автоматизация системы проектирования капитальных горных выработок позволяет выбрать параметры крепи по заданным габаритам, данным геологических изысканий и т. п.

ВНИМИ

6

Сейсм”

Н. Н. Фотиева

И. Я. Дорман

С. Ю. Хазанов

С. А. Абдрафикова

ФОРТРАН

ЕС

Расчет круговых обделок глубокого заложения на сейсмические воздействия

ЦНИИС

7

Расчет круговых обделок

И. Е. Левин

ФОРТРАН

ЕС

Расчет круговых обделок мелкого заложения на сейсмические воздействия

Ленметрогипротранс

8

Анкер

Л. Л. Старчевская

ФОРТРАН

ЕС

Определение напряженно-деформированного состояния и устойчивости выработки, подкрепленной анкерами

То же

9

RAK

В. В. Чеботаев

ПЛ-1

ЕС

Расчет арочной крепи. Определение шага арок в зависимости от горно-технических условий. Определение эпюры моментов, нормальных сил и реакции от единичный нагрузок

ГТМ

10

Нелинейный расчет обделки

В. А. Гарбер

ФОРТРАН

ЕС

То же с учетом нелинейности физико-механических свойств грунта, материала обделки, диаграммы деформирования

ЦНИИС

11

Расчет крепи

Л. Б. Кучумова

АП



Расчет анкер-набрызгбетонной крепи подземных гидротехнических сооружений в породах с коэффициентом крепости больше 4

ЦНИИС

12

Спринт”

Н. Н. Шапошников В. Б. Бабаев

Г. В. Полторак

Е. Г. Перушев

ПЛ-1, ФОРТРАН, АССЕМБЛЕР

ЕС

Система пространственного расчета конструкции и материалов, находящихся под воздействием статических и динамических нагрузок. Алгоритм расчета основан на методике конечных элементов (МКЭ)

МИИТ

13

STATUS

Т. Л. Бердзенешвили О. К. Постольская

ФОРТРАН

ЕС

Программный комплекс для статического расчета по МКЭ плоских и пространственных систем с анизотропными и нелинейными характеристиками

МИСИ

14

FAK-1

Н. Н. Фотиева

ФОРТРАН

ЕС

Расчет напряженного состояния замкнутой некруговой обделки с учетом места установки и сейсмических воздействий

ТПИ

15

Анкер-контакт”

Д. И. Колин

Л. Н. Колина

АЛГОЛ-60

ЕС

Определение усилий, возникающих в анкерах в процессе взаимодействия их с грунтом, с учетом влияния их друг на друга, времени и места установки, ползучести грунта

ЦНИИС

16

FOK-4

Н. Н. Фотиева

А. Н. Козлов

ФОРТРАН

ЕС

Расчет набрызгбетонной крепи на действие собственного веса пород

ТПИ


Приложение11

Обязательное

ОПРЕДЕЛЕНИЕ РАСЧЕТНОГО КОЭФФИЦИЕНТА КРЕПОСТИ f кp .p , СКАЛЬНЫХ ГРУНТОВ ДЛЯ РАСЧЕТОВ НАБРЫЗГБЕТОННЫХ И АНКЕРНЫХ КРЕПЕЙ

Коэффициент крепости f кр.р (коэффициент крепости “в массиве”) определяют по формуле

f кр.р = a · f кр ,

где f кр — нормативный коэффициент крепости пород (коэффициент крепости по М. М. Протодьяконову) “в куске”; а коэффициент, учитывающий трещиноватость массива и обеспечивающий переход от коэффициента крепости “в куске” к коэффициенту крепости “в массиве” (табл. 1).

Коэффициент крепости “в куске” определяют по формуле:

f кр = g · R c

где R с временное сопротивление образца грунта в водонасыщенном состоянии, МПа; g постоянная сводообразования, равная 0,1 МПа-1 .

Таблица 1

Значения коэффициента а

Категория скальных грунтов по

степени трещиноватости

Временное сопротивление R с

грунта одноосному сжатию, МПа


10

20

40

80

160

1. Практически нетрещиноватые

1,7

1,4

1,2

1,1

1,0

2. Слаботрещиноватые

1,4

1,2

1,0

0,9

0,8

3. Трещиноватые

1,2

0,9

0,7

0,6

0,5

4. Сильнотрещиноватые

0,9

0,7

0,5

0,4

0,3

Категорию грунтов по степени трещиноватости определяют согласно табл. 2 в зависимости от трещинной пустотности и густоты трещин (среднее расстояние между трещинами, м); наличие микротрещин не учитывается.

Таблица 2

Категории грунтов

Трещинная пустотность, %

Степень трещиноватости и густота трещин, м


очень

редкая,

более 1,0

редкая,

1,0—0,3

густая,

0,3—0,1

очень

густая,

менее 0,1

Малая, менее 0,3

I

II

III

IV

Средняя, 0,3—1,0

II

III

IV

Большая, 1,0—3,0

III

IV

Очень большая, более 3,0

IV

Примечание. Прочерки в табл. 2 означают, что в этих условиях применение анкерной или набрызгбетонной крепей неэффективно или невозможно.

При определении трещинной пустотности рыхлый или глинопородный материал заполнения трещин не учитывают.

При большой и очень большой трещинной пустотности и хорошо выраженной расчлененности массива на блоки его относят к V категории (прочерки в табл. 2).

В условиях ожидаемого полного нарушения сплошности скальных грунтов в результате интенсивного их расслоения (кливаж) грунты относят к V категории (прочерки в табл. 2).

При наличии поверхностей скольжения категорию грунта повышают на одну ступень.

При трещинах, частично залеченных твердым (кристаллическим) материалом, категорию грунта понижают на одну степень, а при полностью залеченных трещинах грунт относят к I категории.

В условиях обводненной выработки расчетные значения коэффициента крепости f кр.р следует дополнительно снижать умножением на понижающий коэффициент по табл. 3.

Таблица 3

Значения дополнительного понижающего коэффициента

к коэффициенту крепости породы f кp .p за счет обводненности выработки

Интенсивность водопритока в

Грунты скальные при трещинной пустотности

выработку

малой

средней

большой и очень большой

Слабый капёж

1,0

1,0

0,9

Сильный капёж

1,0

0,9

0,8

Очень сильный капёж и струи

0,9

0,8

0,7

Если наиболее развитой системой трещин являются трещины напластования, составляющие с осью тоннеля угол менее 45°, на расчетный коэффициент крепости f кр.р вводят дополнительный коэффициент 0,9.

При проходке выработки в скальных грунтах без применения буровзрывных работ расчетный коэффициент крепости умножают на повышающий коэффициент:

1,3— для сильнотрещиноватых и раздробленных грунтов;

1,2— для прочих грунтов.



Приложение 12

Рекомендуемое

ДАННЫЕ ДЛЯ ВЫБОРА СПОСОБА НАНЕСЕНИЯ НАБРЫЗГБЕТОННОГО ПОКРЫТИЯ НА ОБВОДНЕННУЮ ПОВЕРХНОСТЬ. ТРЕБОВАНИЯ К ВЯЖУЩИМ

Характер обводненной поверхности

Рекомендации по технологии нанесения набрызгбетонного покрытия

Необходимое время схватывания вяжущего (не позднее).

Небольшой водоприток в виде капежа или незначительных течей

Первый слой набрызгбетона рекомендуется наносить с пониженным В/Ц

Сконцентрированный водоприток

Предварительно осуществляют отвод воды посредством выбуривания коротких шпуров и установки на быст-ротвердеющем цементе коротких патрубков-кондукторов, на которые надевают шланги. Набрызгбетон на осушенные поверхности наносят обычным способом

Водоприток по всей поверх- ности, л/(мин · м):

до 1

Выбирают расстояние от сопла до поверхности набрызга от 0,5 до 0,6 м



2

до 2


1

до 3


1

до 5


Мгновенное

8

Сначала закрепляют сухие или сырые поверхности обычным способом, затем сжатым воздухом, истекающим из насадки с овальным щелевым отверстием, сдувают воду на уже закрепленные поверхности с интенсивным водопритоком. Под защитой воздушной струи наносят набрызгбетон с ускорителями на еще не закрепленные поверхности

>8

В местах течей устанавливают резиновые и металлические трубки для отвода воды, при наличии водоносных трещин—разрабатывают канавки

Примечание. Во всех случаях, указанных в таблице, используют смеси с повышенным содержанием цемента. Для выбора вида вяжущего и химических добавок следует использовать данные табл. 1 прил. 7.

Приложение 13

Справочное

ОБОРУДОВАНИЕ ДЛЯ НАБРЫЗГБЕТОННЫХ РАБОТ

Таблица 1

Технические характеристики набрызгбетон-машины


Камерные

Шнековые

Роторные

Показатели

С-630Л

С-702*

БМ-60

БМ-60П

СБ-67

(С-1007)

ТП-2

ПБМ-1

ПБМ-2

ПБМ-1,5

БМ-68У

БМ-70**

Производительность по сухой смеси, м3 / ч

4

3

4

3—4

4

2

8

8

11

6

6

Максимальная крупность заполнителей, мм

25

10

25

25

20

15

10

10

10

16

16

Внутренний диаметр материального шланга, мм

50

38

50

50

50

50

50

50

50

50

65

Давление сжатого воздуха, МПа (кгс/см2 )

0,15 0,5 (1,5 5)

0 ,15 0,5 (1,5 5)

0,15 0,5 (1,5 5)

0,5

(5)

0,5

(5)

0,3 0,5

(3 5)

0,2 0,3 (2 2,8)

0,2 0,3 (2 2,8)

0,2—0,3 (2 2,8)

0,4—0,5

(4 5)

0,5

(5)

Дальность транспор-тировки, м:

по горизонтали



200



150



200



200



200



100



200



200



200



200



200

по вертикали

50

40

30

30

35

40

 —

 —

 —

10

50

Мощность электропривода, кВт

2,8

2,8+1

4,5

 —

2,8

7

 —

 —

 —

5,5

1,5

Мощность пневмопривода, кВт

 —

 —

 —

2,2

 —

 —

8,8

10,2

8,8

 —

 —

Основные размеры, мм:

высота


1660


1830


1600


1600


1700




1630


1630


1625


ширина

1000

895

1100

1100

1100

540

1320

1270

880

850

1080

длина

1670

1537

1420

S700

2000

1000

4313

3300

3470

1400

3400

Загрузочная высота, мм

1660

 —

1600

!600

1700

800

1780

1630

1630

1400

 —

Масса, кг

886

1000

1000

1000

1000

470

4500

3100

2225

850

5400

Закрыть

Строительный каталог