СНиП 2.02.04-88 (1990), часть 2
Контуры зоны оттаивания или замены грунтов основания в плане должны выходить за контуры сооружения не менее чем на половину глубины предварительного оттаивания грунта.
Допускается принимать меньшую площадь предварительного оттаивания или замены грунтов в плане, а также производить локальное предварительное оттаивание грунтов под фундаментами (вместо сплошного оттаивания под всей площадью сооружения), если это обосновано расчетом основания по деформациям и устойчивости.
Оттаивание грунтов оснований можно производить способами электрооттаивания, парооттаивания или за счет других источников тепла. При этом должны быть предусмотрены меры по обеспечению установленной проектом степени уплотнения оттаянного грунта.
3.27. Для ограничения глубины оттаивания грунтов в основании сооружения следует предусматривать устройство теплоизолирующих подсыпок, увеличение сопротивления теплопередаче полов первых этажей и другие мероприятия по уменьшению теплового влияния сооружения на грунты основания, а также стабилизацию верхней поверхности вечномерзлого грунта (в том числе при несливающемся сезоннопромерзающем слое) ниже глубины заложения подошвы фундаментов путем регулирования температуры воздуха в подпольях или технических этажах здания согласно обязательному приложению 5.
3.28. Приспособление конструкций сооружений к неравномерным деформациям основания должно обеспечиваться:
а) увеличением прочности и пространственной жесткости здания, достигаемой устройством поэтажных, связанных с перекрытиями железобетонных и армокирпичных поясов, усилением армирования конструкций, замоноличиванием сборных элементов перекрытия, усилением цокольно-фундаментной части, равномерным расположением сквозных поперечных стен, а также разрезкой протяженных зданий на отдельные отсеки длиной до полуторной ширины здания;
б) увеличением податливости и гибкости сооружения путем разрезки его конструкций деформационными швами, устройством гибких сопряжений отдельных конструкций с учетом возможности их выравнивания и рихтовки технологического оборудования.
Допускается предусматривать комбинацию указанных мероприятий применительно к особенностям проектируемого сооружения. При этом бескаркасные жилые и общественные здания следует, как правило, проектировать по жесткой конструктивной схеме; для промышленных сооружений могут применяться гибкие и комбинированные конструктивные схемы. Цокольно-фундаментную часть зданий в типовых проектах следует разрабатывать в нескольких вариантах, рассчитанных по прочности на разные пределы допустимых деформаций основания.
3.29. При использовании вечномерзлых грунтов в качестве оснований по принципу II следует, как правило, применять:
а) для сооружений с жесткой конструктивной схемой, возводимых на оттаивающих грунтах, – усиленные армопоясами ленточные фундаменты, в том числе в виде жестких перекрестных лент, воспринимающих и перераспределяющих усилия, вызванные неравномерной осадкой оттаивающего основания, а в необходимых случаях – плитные фундаменты; на предварительно оттаянных и уплотненных грунтах допускается применять столбчатые, ленточные и другие виды фундаментов на естественном основании, а также свайные фундаменты, если это обусловлено грунтовыми условиями;
б) для сооружений с гибкой конструктивной схемой – столбчатые и отдельно стоящие фундаменты под колонны, гибкие ленточные фундаменты, а в необходимых случаях также свайные фундаменты.
3.30. В случаях, когда в основании сооружений залегают скальные или другие малосжимаемые при оттаивании грунты, следует применять столбчатые фундаменты, свайные фундаменты из свай-стоек, в том числе из составных и буронабивных свай.
Сваи следует погружать, как правило, буроопускным способом в скважины, диаметр которых не менее чем на 15 см превышает наибольшие размеры поперечного сечения сваи, с заполнением свободного пространства грунтовым, цементно-песчаным или другим раствором. Заделку свай-стоек в скальные грунты надлежит производить в соответствии с требованиями СНиП 2.02.03– 85.
Требования к инженерной подготовке территории и охране окружающей среды
3.31. В проекте оснований и фундаментов на вечномерзлых грунтах должны быть предусмотрены мероприятия по инженерной подготовке территории, обеспечивающие соблюдение расчетного гидрогеологического и теплового режима грунтов основания и предотвращение эрозии, развития термокарста и других физико-геологических процессов, приводящих к изменению проектного состояния грунтов в основании сооружений при их строительстве и эксплуатации, а также к недопустимым нарушениям природных условий окружающей среды.
3.32. Инженерная подготовка отдельных строительных площадок должна быть увязана с общей инженерной подготовкой и вертикальной планировкой территории застройки в соответствии с генпланом и обеспечивать организованный отвод поверхностных и подмерзлотных вод с начала строительства.
Подъездные пути и насыпи для прохождения транспортных средств и работы строительной техники следует устраивать до начала работ по возведению фундаментов.
3.33. На территории с вечномерзлыми грунтами вертикальную планировку местности следует производить, как правило, подсыпкой. При применении в необходимых случаях срезок и выемок грунта должны быть приняты меры по защите вскрытых льдистых грунтов от протаивания, размыва и оползания склонов. Подсыпку можно выполнять сплошной по всей застраиваемой территории или под отдельные сооружения или их группы при условии обеспечения свободного стока поверхностных вод.
3.34. При использовании вечномерзлых грунтов по принципу I подсыпку следует выполнять, как правило, в зимний период после промерзания сезоннооттаявшего слоя грунта (не менее чем на 0,2 м). Толщина и способ устройства подсыпок принимаются в зависимости от их назначения и грунтовых условий.
На участках с сильнольдистыми грунтами и подземными льдами следует устраивать сплошные по площади теплоизолирующие подсыпки, толщину которых необходимо устанавливать расчетом по условию предотвращения протаивания подстилающего льдистого грунта согласно указаниям п. 5.2. Устройство подсыпок, используемых в качестве оснований сооружений, следует производить согласно указаниям п. 3.23.
3.35. При использовании вечномерзлых грунтов в качестве оснований по принципу II вертикальную планировку допускается осуществлять подсыпками и выемками грунта. Подсыпки надлежит устраивать, как правило, по оттаянному грунту слоя сезонного промерзания– оттаивания.
Уровень планировочных отметок, высоту подсыпок, уклоны водоотводящей сети следует принимать с учетом расчетных осадок грунтов при оттаивании. В необходимых случаях (сильнольдистые или заторфованные грунты, неравномерная льдистость грунтов) следует осуществлять частичное оттаивание или замену грунтов верхнего льдистого слоя.
При высоком уровне подземных вод необходимо предусматривать меры по предотвращению обводнения заглубленных подвалов или технических этажей здания: поднятие уровня планировочных отметок, устойство дренажа, противофильтрационные завесы и т. п.
3.36. В составе мероприятий по инженерной подготовке территории должны быть предусмотрены природоохранные мероприятия, направленные на восстановление нарушенных в процессе строительства природных условий, в том числе мероприятия по рекультивации и восстановлению почвенно-растительного слоя, засыпке выемок, траншей и карьеров, выполаживанию и одернованию склонов и откосов, а также по предупреждению развития эрозии, термокарста и процессов размыва грунта.
3.37. Для обеспечения устойчивости и эксплуатационной пригодности зданий и сооружений при прокладке наружных сетей систем водоснабжения, канализации, теплоснабжения следует предусматривать, как правило, тот же принцип использования вечномерзлых грунтов в качестве оснований, который принят для зданий и сооружений, размещаемых на данной территории застройки. Применение различных принципов допускается при условии прокладки сетей, как правило, в каналах на таком расстоянии от зданий и сооружений, при котором не произойдет изменения расчетных температур оснований зданий и сооружений, или при применении других мер, предусмотренных п. 3.5.
Вводы и выпуски инженерных сетей в зданиях или сооружениях и прокладку этих сетей в подпольях и технических этажах следует осуществлять по принципу использования вечномерзлых грунтов, принятому для данного здания или сооружения. Конструкция вводов и выпусков должна быть такой, чтобы при использовании вечномерзлых грунтов в качестве основания по принципу I исключалась возможность местного оттаивания грунтов или повышения (против установленной в проекте) их расчетной температуры, а при использовании грунтов в качестве основания по принципу II – ускоренного местного оттаивания и, как следствие, увеличенной неравномерности деформации основания фундаментов.
4. Расчет оснований и фундаментов
Общие указания
4.1. При проектировании оснований и фундаментов сооружений, возводимых на вечномерзлых грунтах, следует выполнять теплотехнические расчеты основания и расчеты основания и фундаментов на силовые воздействия. В расчетах основания и фундаментов надлежит учитывать принцип использования вечномерзлых грунтов в качестве основания, тепловое и механическое взаимодействие сооружения и основания.
4.2. Основания и фундаменты следует рассчитывать по двум группам предельных состояний: по первой – по несущей способности, по второй – по деформациям (осадкам, прогибам и пр.), затрудняющим нормальную эксплуатацию конструкций сооружения или снижающим их долговечность, а элементы железобетонных конструкций – и по трещиностойкости.
При расчете по предельным состояниям несущую способность основания и его ожидаемые деформации следует устанавливать с учетом температурного режима грунтов основания, а при принципе I – также с учетом продолжительности действия нагрузок и реологических свойств грунтов.
Фундаменты как элементы конструкций в зависимости от их материала следует рассчитывать в соответствии с требованиями СНиП 2.03.01– 84, СНиП II-23– 81*, СНиП II-25– 80 и СНиП 2.05.03– 84.
4.3. Расчет оснований следует производить:
а) при использовании вечномерзлых грунтов по принципу I: по несущей способности – для твердомерзлых грунтов; по несущей способности и деформациям – для пластичномерзлых и сильнольдистых грунтов, а также подземных льдов;
б) при использовании вечномерзлых грунтов по принципу II: по несущей способности – в случаях, предусмотренных СНиП 2.02.01– 83; по деформациям – по всех случаях, при этом для оснований, оттаивающих в процессе эксплуатации сооружения, расчет по деформациям надлежит производить из условия совместной работы основания и сооружения (фундаментов).
Расчет оснований по деформациям следует производить на основные сочетания нагрузок и воздействий; расчет по несущей способности – на основные и особые сочетания нагрузок и воздействий.
4.4. Нагрузки и воздействия, передаваемые на основания сооружением, следует устанавливать расчетом в соответствии с требованиями СНиП 2.01.07– 85 с учетом указаний СНиП 2.02.01– 83 и СНиП 2.02.03– 85, а для оснований опор мостов и труб под насыпями – согласно СНиП 2.05.03– 84.
При использовании вечномерзлых грунтов по принципу I, если грунты основания находятся в твердомерзлом состоянии, а также в случаях, предусматриваемых СНиП 2.02.01– 83, нагрузки и воздействия на основание допускается назначать без учета их перераспределения надфундаментными конструкциями сооружения.
При использовании вечномерзлых грунтов в качестве основания по принципу II нагрузки на основание следует определять, как правило, с учетом совместной работы основания и сооружения.
4.5. Нагрузки и воздействия, которые по СНиП 2.01.07– 85 могут относиться как к длительным, так и к кратковременным, при расчете мерзлых оснований по несущей способности должны относиться к кратковременным, а при расчете оснований по деформациям – к длительным.
Воздействия, вызванные осадками грунтов при предусмотренном в проекте оттаивании их в процессе эксплуатации сооружения, следует относить к длительным; воздействия, связанные с возможным протаиванием и просадками грунтов при нарушениях эксплуатационного режима сооружения, – к особым.
Расчет оснований и фундаментов при использовании вечномерзлых грунтов по принципу I
4.6. Расчет оснований фундаментов по первой группе предельных состояний (по несущей способности) производится исходя из условия
F £ Fu /g n (2)
где F – расчетная нагрузка на основание;
Fu – несущая способность (сила предельного сопротивления) основания, определяемая расчетом (п. 4.7), а для оснований свайных фундаментов – расчетом или по данным полевых испытаний свай (п. 4.16);
g n – коэффициент надежности по назначению сооружения, принимаемые в соответствии с требованиями СНиП 2.02.01– 83 в зависимости от вида и класса ответственности сооружения, а для оснований опор мостов – согласно СНиП 2.05.03– 84 и указаниям п. 9.13 настоящих норм.
4.7. Несущая способность основания Fu , кН (кгс), вертикально нагруженной висячей сваи или столбчатого фундамента определяется по формуле
, (3)
где g t – температурный коэффициент, учитывающий изменение температуры грунтов основания в период строительства и эксплуатации сооружения, определяемый по указаниям п. 4.10;
g с – коэффициент условий работы основания, принимаемый по указаниям п. 4.9;
R – расчетное давление на мерзлый грунт под нижним концом сваи или под подошвой столбчатого фундамента, кПа (кгс/см2 ), определяется согласно указаниям п. 4.8;
А – площадь подошвы столбчатого фундамента или площадь опирания сваи на грунт, м2 (см2 ), принимаемая для сплошных свай равной площади их поперечного сечения (или площади уширения), для полых свай, погруженных с открытым нижним концом, – площади поперечного сечения сваи брутто при заполнении ее полости цементно-песчаным раствором или грунтом на высоту не менее трех диаметров сваи;
Raf,i – расчетное сопротивление мерзлого грунта или грунтового раствора сдвигу по боковой поверхности смерзания фундамента в пределах (i -го слоя грунта, кПа (кгс/см2 ), определяемое согласно указаниям п. 4.8;
Аaf,i – площадь поверхности смерзания i -го слоя грунта с боковой поверхностью сваи, а для столбчатого фундамента – площадь поверхности смерзания грунта с нижней ступенью фундамента, м2 (см2 );
n – число выделенных при расчете слоев вечномерзлого грунта.
При однородных по составу вечномерзлых грунтах несущую способность основания висячей сваи допускается определять по формуле
Fu = g t g c (RA + Raf + Aaf ) (4)
где Raf – расчетное сопротивление мерзлого грунта сдвигу на поверхности смерзания, кПа (кгс/см2 ), при средней по длине сваи (эквивалентной) температуре вечномерзлого грунта Те (п. 4.12.);
Аaf – площадь смерзания сваи с вечномерзлым грунтом, м2 (см2 ).
Примечания: 1. При расчете несущей способности основания столбчатого фундамента силы смерзания грунта, определяемые вторым слагаемым формулы (3), учитываются только при условии выполнения обратной засыпки пазух котлована влажным грунтом, что должно быть отмечено в проекте.
2. В случаях, когда слой сезонного промерзания – оттаивания не сливается с вечномерзлым грунтом, несущую способность свай в пределах немерзлого слоя грунта допускается учитывать по СНиП 2.02.03– 85. При этом должны быть предусмотрены меры по стабилизации верхней поверхности вечномерзлого грунта.
4.8. Расчетное давление на мерзлый грунт под подошвой фундамента R и расчетные сопротивления мерзлого грунта или грунтового раствора сдвигу по поверхности смерзания фундамента Raf устанавливаются по данным испытаний грунтов, проводимых в соответствии с ГОСТ 24586– 81, с учетом коэффициента надежности по грунту g g , принимаемому согласно указаниям п. 2.8, и расчетных температур грунта основания Тm , Tz и Те , определяемых теплотехническим расчетом по указаниям п. 4.12.
По результатам испытаний грунтов шариковым штампом или на одноосное сжатие расчетные значения R , кПа (кгс/см2 ), вычисляются по формуле
R = 5,7cn /g g + g I d (5)
где cn – нормативное значение предельно длительного сцепления, кПа (кгс/см2 ), принимаемое равным: cn = cn,eg при испытаниях грунтов шариковым штампом и cn = 0,5s n – при испытаниях на одноосное сжатие, где cn,eg и s n – соответственно предельно длительное эквивалентное сцепление и сопротивление грунта одноосному сжатию;
g I – расчетное значение удельного веса грунта, кН/м3 (кгс/см3 );
d – глубина заложения фундамента, м (см).
В случаях, предусмотренных п. 2.9, расчетные значения R и Raf допускается принимать по таблицам рекомендуемого приложения 2.
При расчетах несущей способности оснований значения R следует принимать: для свайных фундаментов – при расчетной температуре грунта Tz на глубине z , равной глубине погружения сваи; для столбчатых фундаментов – при расчетной температуре грунта Tm на глубине заложения подошвы фундамента.
Расчетные сопротивления сдвигу Raf,i следует принимать: для свайных фундаментов – при температуре грунта Tz на глубине середины i -го слоя грунта; для столбчатых фундаментов – при температуре грунта Tm на глубине, соответствующей середине нижней ступени фундамента.
При расчетах по формуле (3) значения Raf принимается при средней (эквивалентной) температуре грунта Те (п. 4.12).
Для буроопускных свай расчетное сопротивление сдвигу необходимо принимать наименьшим из значений сдвига по поверхности смерзания сваи Raf и сдвига по грунту или буровому раствору Rsh ; для буронабивных свай – по значению Rsh . При расчете несущей способности комбинированных свай (дерево-металлических, сборно-монолитных и др.) значения Raf следует принимать с учетом неодинаковой прочности смерзания с грунтом их различных элементов в соответствии с указаниями рекомендуемого приложения 2.
Для свай, опираемых на песчано-щебеночную подушку высотой не менее трех диаметров скважины, расчетное значение R допускается принимать для грунта подушки, а значение А – равным площади забоя скважины. При опирании свай на льдистые грунты с льдистостью ii ³ 0,2 расчетные значения R следует принимать с понижающим коэффициентом ni = 1 – ii .
Для кратковременных нагрузок с временем действия t , равным или меньшим продолжительности перерывов между ними, расчетные значения R и Raf допускается принимать с повышающим коэффициентом nt (кроме опор мостов) в соответствии с данными табл. 2.
Таблица 2
Время действия нагрузки t , ч |
0,1 |
0,25 |
0,5 |
1 |
2 |
8 |
24 |
Коэффициент nt |
1,7 |
1,5 |
1,35 |
1,25 |
1,2 |
1,1 |
1,05 |
4.9. Коэффициент условий работы основания g c принимается по табл. 3 в зависимости от вида и способов устройства фундаментов (кроме опор мостов).
Таблица 3
Виды фундаментов и способы их устройства |
Коэффициент g с |
Столбчатые и другие виды фундаментов на естественном основании То же на подсыпках Буроопускные сваи с применением грунтовых растворов, превышающих по прочности смерзания вмещающие грунты То же при равномерной прочности грунтовых растворов и вмещающего грунта Опускные и буронабивные сваи Бурозабивные сваи при диаметре лидерных скважин менее 0,8 диаметра свай То же при большем диаметре лидерных скважин |
1,0
0,9 1,1
1,0
1,0 1,0
0,9 |
Значения коэффициента g с приведенные в табл. 3, допускается увеличивать пропорционально отношению полной нагрузки на фундамент к сумме постоянных и длительных временных нагрузок, но не более чем в 1,2 раза, если расчетные значения деформаций основания при этом не будут превышать предельно допустимых значений.
4.10. Температурный коэффициент g t , учитывающий температурные условия работы основания, устанавливается расчетом в зависимости от состояния и температуры грунтов основания до загружения фундаментов и их изменения в процессе эксплуатации сооружения. Значения g t допускается принимать равными:
а) g t = 1,1, если расчетная среднегодовая температура вечномерзлых грунтов Т о (п. 8 обязательного приложения 3) соответствует твердомерзлому состоянию грунта и не выше расчетной среднегодовой температуры на верхней поверхности вечномерзлого грунта Т’ о (п. 4.13), устанавливающейся в основании сооружения в процессе его эксплуатации;
б) g t = 1,0, если расчетная среднегодовая температура вечномерзлых грунтов Т о соответствует пластичномерзлому состоянию грунта и выше значения температуры Т’ о , устанавливающейся в процессе эксплуатации сооружения.
При расчетах оснований трубопроводов, линий электропередач и других линейных сооружений коэффициент g t следует принимать равным 0,8.
4.11. Передача на фундаменты проектных нагрузок допускается, как правило, при температуре грунтов в основании сооружения не выше установленных на эксплуатационный период расчетных значений. В необходимых случаях следует предусматривать мероприятия по предварительному (до загружения фундаментов) охлаждению пластичномерзлых грунтов (п. 3.14) до установленных расчетом значений температуры.
При соответствующем обосновании расчетом основания по деформациям допускается загружать фундаменты при температурах грунта выше расчетных, но не выше значений: Т = Тbf – 0,5° С – для песчаных и крупнообломочных грунтов и Т = Тbf – 1° С – для пылевато-глинистых, где Tbf – температура начала замерзания грунта (п. 5 обязательного приложения 1). Несущая способность основания Fu в этом случае должна определяться при расчетных температурах грунта, устанавливаемых без учета теплового влияния сооружения по формуле (10), принимая коэффициент g t по расчету, но не более 1,2.
4.12. Расчетные температуры грунтов Tm , Tz и Те определяются расчетом теплового взаимодействия сооружения с вечномерзлыми грунтами основания в периодически установившемся тепловом режиме с учетом переменных в годовом периоде условий теплообмена на поверхности, формы и размеров сооружения, глубины заложения и расположения фундаментов в плане, а также теплового режима сооружения и принятых способов и средств сохранения мерзлого состояния грунтов основания.
При расчетах вечномерзлых оснований по несущей способности деформациям расчетные температуры грунтов Tm , Tz и Те следует принимать равными:
Тm – максимальной в годовом периоде температуре грунта в установившемся эксплуатационном режиме на глубине заложения фундамента zd , отсчитываемой от верхней поверхности вечномерзлого грунта;
Те – максимальной в годовом периоде средней по глубине заложения фундамента zd температуре вечномерзлого грунта в установившемся эксплуатационном режиме (эквивалентная температура грунта);
Tz – температура вечномерзлого грунта на данной глубине z от его верхней поверхности, принимаемой на момент установления температуры Те .
4.13. Для оснований свайных, столбчатых и других видов фундаментов сооружений с холодным (вентилируемым) подпольем, опор трубопроводов, линий электропередач, антенно-мачтовых сооружений, кроме оснований опор мостов, расчетные температуры грунтов Tm , Tz и Те допускается определять по формулам:
для оснований сооружений с холодным подпольем под серединой сооружения
; (6)
под краем сооружения
; (7)
под углами сооружения
, (8)
для оснований опор линий электропередач, антенно-мачтовых сооружений и трубопроводов
Tm,z,e = (T0 – Tbf )a m,z,e kts + Tbf (9)
где Т’ о – расчетная среднегодовая температура на верхней поверхности вечномерзлого грунта в основании сооружения, ° С, определяемая согласно обязательному приложению 4;
Tbf – температура начала замерзания грунта, ° С, определяемая согласно обязательному приложению 1;
Т о – расчетная среднегодовая температура грунта, ° С, определяемая согласно обязательному приложению 3;
a m , a z , a e – коэффициенты сезонного изменения температуры грунтов основания, принимаемых по табл. 4 в зависимости от значения параметра , с0,5 (ч0,5 ), где z – глубина от поверхности вечномерзлого грунта, м;
cf – объемная теплоемкость, Дж/ (м3 ×° С) [ккал/(м3 ×° С), и l f – теплопроводность мерзлого грунта, Вт/(м3 ×° С) определяемые согласно обязательному приложению 1;
k 1 , k 2 и k 3 – коэффициенты теплового влияния сооружения, принимаемые по табл. 5 в зависимости от отношений z /В и L /В , L и В – соответственно длина и ширина сооружения, м;
kts – коэффициент теплового влияния изменения поверхностных условий при возведении фундаментов линейных сооружений, принимаемый по табл. 6 в зависимости от вида и глубины заложения фундаментов z , м.
Таблица 4
Коэф-фици- |
Значения (ч0,5 ) |
|||||||||
енты |
0 (0) |
1000 (25) |
2000 (50) |
3000 (75) |
4000 (100) |
6000 (125) |
8000 (175) |
10000 (175) |
15000 (250) |
20000 (300) |
a m |
0 (0) |
0,28 (0,38) |
0,47 (0,61) |
0,61 (0,76) |
0,71 (0,85) |
0,85 (0,91) |
0,92 (0,94) |
0,96 (0,96) |
0,99 (0,99) |
1,00 (1,00) |
a z |
0 (0) |
0,30 (0,40) |
0,52 (0,67) |
0,67 (0,85) |
0,80 (0,95) |
0,95 (1,01) |
1,02 (1,03) |
1,03 (1,03) |
1,01 (1,01) |
1,00 (1,00) |
a e |
0 (0) |
0,14 (0,21) |
0,26 (0,38) |
0,38 (0,51) |
0,47 (0,61) |
0,61 (0,68) |
0,70 (0,74) |
0,77 (0,78) |
0,85 (0,85) |
0,90 (0,88) |
Таблица 5
Форма |
|
Коэффициенты k для определения Tm , Tz , Te |
|||||||||||
сооружения |
L /B |
k 1 при z/B |
k 2 при z/B |
k 3 при z/B |
|||||||||
в плане |
|
0,25 |
0,5 |
1,0 |
2,0 |
0,25 |
0,5 |
1,0 |
2,0 |
0,25 |
0,5 |
1,0 |
2,0 |
Прямоугольная |
1 |
0,41 0,21 |
0,67 0,38 |
0,87 0,57 |
0,96 0,75 |
0,17 0,09 |
0,28 0,16 |
0,39 0,25 |
0,47 0,34 |
0,06 0,03 |
0,10 0,05 |
0,17 0,09 |
0,22 0,14 |
|
2 |
0,33 0,17 |
0,56 0,31 |
0,80 0,50 |
0,93 0,68 |
0,15 0,08 |
0,26 0,14 |
0,37 0,23 |
0,45 0,32 |
0,04 0,02 |
0,08 0,04 |
0,14 0,08 |
0,20 0,12 |
|
3 |
0,32 0,16 |
0,53 0,30 |
0,76 0,47 |
0,91 0,65 |
0,15 0,08 |
0,25 0,14 |
0,36 0,22 |
0,44 0,31 |
0,04 0,02 |
0,08 0,04 |
0,13 0,07 |
0,19 0,12 |
|
³ 5 |
0,29 0,14 |
0,50 0,27 |
0,71 0,44 |
0,84 0,62 |
0,15 0,07 |
0,25 0,14 |
0,35 0,22 |
0,42 0,30 |
0,03 0,02 |
0,07 0,04 |
0,12 0,07 |
0,18 0,11 |
Круглая |
– |
0,45 0,23 |
0,71 0,41 |
0,89 0,62 |
0,97 0,78 |
0,22 0,13 |
0,32 0,20 |
0,40 0,28 |
0,45 0,36 |
_ |
_ |
_ |
_ |
Примечания: 1. В числителе указаны значения коэффициентов k для температур Tm и Tz , в знаменателе – для температуры Te . 2. При z /B = 0 коэффициенты k 1 , k 2 и k 3 следует принимать равными 0. |
Таблица 6
Виды |
Коэффициент kts при z , м |
||
фундаментов |
до 2 |
от 2 до 6 |
св. 6 |
Массивные и свайные с ростверком, заглубленным в грунт Свайные с высоким ростверком и сборные под опоры рамно-стоечного типа |
0,7
0,9 |
0,9
1,0 |
1,0
1,0 |
4.14. Расчетные температуры вечномерзлых грунтов основания без учета теплового влияния сооружения определяются по формуле
Tm,z,e = (T 0 – Tbf ) a m,z,e + Tbf (10)
где обозначения те же, что в формуле (6).
4.15. Расчетные температуры грунтов оснований фундаментов, охлаждаемых системой вентилируемых труб, каналов или полостей в фундаментах (п. 3.12), следует определять из совместного теплотехнического расчета основания и параметров системы охлаждения исходя из условия:
, (11)
где Т’ о – расчетная среднегодовая температура на верхней поверхности вечномерзлого грунта в основании сооружения, отвечающая проектному положению границы сезонного оттаивания грунтов, включая грунты подсыпки.
При равномерном расположении охлаждающих труб или каналов под всей площадью сооружения расчетные температуры грунтов в его основании Тm , Tz и Те допускается определять как для сооружений с холодным подпольем (п. 4.13) при среднем по площади сооружения значении температуры Т’ о .
4.16. Несущая способность основания одиночной сваи Fu по результатам полевых испытаний свай статической вдавливающей нагрузкой определятся по формуле
, (12)
где k – коэффициент, учитывающий различие в условиях работы опытной и проектируемых свай и определяемый по формуле
k = Fu,p /Fu,t , (13)
здесь Fu,p и Fu,t – значение несущей способности соответственно проектируемой и опытной свай, рассчитанные по формулам (3) или (4) по значениям R и Raf , принимаемым по таблицам рекомендуемого приложения 2: для проектируемой сваи – при расчетных температурах грунта, устанавливаемых согласно указаниям пп. 4.8 и 4.12, а для опытной сваи – при температурах, измеренных при испытании;
Fu,n – нормативное значение предельно длительного сопротивления основания опытной сваи статической нагрузке, определяемое по данным испытания сваи в соответствии с ГОСТ 24546– 81 с учетом требований ГОСТ 20522– 75;
g g – коэффициент надежности по грунту, принимаемый равным 1,1.
4.17. Несущую способность основания столбчатого фундамента, нагруженного внецентренно сжимающей нагрузкой, допускается определять в соответствии с требованиями СНиП 2.02.01– 83. При этом эксцентриситеты приложения равнодействующей всех нагрузок на уровне подошвы фундамента следует определять с учетом смерзания грунта с боковой поверхностью нижней ступени фундамента по формулам:
el = (Me – Maf )/F , (14)
eb = (Mb – Maf )/F , (15)
где el и eb – соответственно эксцентриситеты приложения равнодействующей всех нагрузок относительно осей прямоугольной подошвы фундамента со сторонами l и b , м (см);