ГОСТ Р 51164-98, часть 4
В.4 Электрическая схема
Для проведения испытаний собирают электрическую схему согласно рисункам В.1 и В.2 (В.3 и В.4).
В.4.1 Анод магниевый
Образец с помощью проводов соединяют с магниевым анодом, как показано на рисунках В.1 и В.3. При этом на образце устанавливают потенциал минус 1,45 - минус 1,55 В по медно-сульфатному электроду сравнения 9, что соответствует приблизительно минус 1,4 В по хлорсеребряному электроду сравнения.
Измерение установившегося потенциала на образце производят с помощью электрода сравнения и высокоомного вольтметра постоянного тока 5 (рисунок В.1 или В.3).
В.4.2 Анод инертный
При испытании с инертным анодом собирают схему согласно рисункам В.2 или В.4.
Образец 1 подключают к отрицательному полюсу источника тока. Инертный электрод 4 соединяют последовательно с эталонным сопротивлением (1 Ом) 6, реостатом 7 и положительным полюсом источника тока. Вольтметр 5 подключают параллельно эталонному сопротивлению 6. Управляя реостатом 7 устанавливают по показателям вольтметра 8 потенциал на образце минус (1,5 ± 0,05) В. Далее вольтметр 5 отключают и фиксируют время начала испытаний.
В.5 Порядок проведения испытаний
В.5.1 Образцы выдерживают в растворе электролита под действием наложенного катодного тока в течение 30 дней при температуре 291-295 К (18-22 °С) и 30 или 7 дней (по требованию заказчика) при более высокой температуре, например, 333 К (60 °С), 353 К (80 °С) или 370 К (97 °С). Выбор температуры испытаний определяется максимальной температурой эксплуатации покрытия.
В.5.2 Испытания при повышенной температуре проводят в электронагревательном шкафу с поддержанием требуемой температуры. Уровень электролита при этом следует контролировать не реже одного раза в сутки.
В.5.3 Периодически через каждые 7 дней испытаний производят замену раствора электролита. Для этого подачу напряжения на образцы прекращают, электролит выливают, емкость и образцы промывают дистиллированной водой, заливая ее 2-3 раза и взбалтывая. Затем заливают свежий 3 %-ный раствор NaCl.
В.5.4 По окончании испытаний образец с покрытием демонтируют, промывают водой и вытирают ветошью. Площадь отслоившегося участка покрытия оголяют, осторожно поддевая и срезая покрытие скальпелем.
В.5.5 Для жестких покрытий толщиной более 1,2 мм допускается нагревание покрытия выше температуры размягчения с последующим полным удалением покрытия с металла. Площадью отслаивания покрытия в этом случае является площадь, ограниченная контуром изменения цвета металла с серого на более темный.
В.6 Обработка результатов испытаний
Площадь отслаивания переводят на кальку, а затем вычисляют методом взвешивания. Для этого переносят кальку площади на плотную бумагу с известной массой единицы площади. Площадь отслаивания , см, вычисляют по формуле
где - масса бумаги площадью, равной площади отслаивания, г;
- масса 1 см бумаги (значение определяют как среднее арифметическое массы 10 образцов площадью 1 см , вырезанных по диагонали листа бумаги), г/см.
За значение площади отслаивания данного покрытия при катодной поляризации принимают среднее арифметическое результатов измерений на трех образцах испытуемого покрытия, вычисляемое с точностью до 0,5 см.
В.7 Оформление результатов испытаний
Запись результатов измерений проводят по форме В.1.
Форма В.1
Все графы обязательны к заполнению
______________________________________
наименование принимающей организации
АКТ
определения площади отслаивания покрытий
при поляризации катодным током
Конструкция и тип защитных покрытий _____________________________________________
Форма образцов _________________________________________________________________
Анод ___________________________________________________________________________
инертный, активный
Диаметр наносимого повреждения в покрытии, мм ____________________________________
Разрешенная предельная площадь отслаивания при температуре:
293 К (20 °С), см _________
_____ К ( ____ °С), см _________
Дата испытаний |
Номер партии, участок трубопровода
|
Номер измерения |
Температура испытаний, °С |
Продолжительность выдержки в электролите, сут |
Площадь отслаивания, см2 |
|
|
1
|
|
|
|
|
|
2
|
|
|
|
|
|
3
|
|
|
|
|
|
|
Средняя площадь отслаивания
|
|
Площадь отслаивания при катодной поляризации партии образцов _______________________
__________________________________________________________________________________
соответствует, не соответствует требуемому значению
____________________________________ _____________ _____________________
должность лиц, проводивших определение личная подпись расшифровка подписи
___________________
дата
ПРИЛОЖЕНИЕ Г
(справочное)
МЕТОДИКА ОПРЕДЕЛЕНИЯ ПЕРЕХОДНОГО СОПРОТИВЛЕНИЯ ПОКРЫТИЯ
Методика предназначена для проведения типовых испытаний и позволяет определить изменение защитной способности покрытия в электролите.
Сущность метода заключается в измерении переходного сопротивления системы покрытие - труба (после выдержки образцов в 3 %-ном растворе NaCl).
Г.1 Образцы для испытаний
Г.1.1 Испытания заводских покрытий проводят на образцах, вырезанных из изоляции труб или непосредственно на трубах с покрытием. Размеры образцов 150х150 мм (нормируются не жестко). Для других типов покрытий образцы подготавливаются путем нанесения покрытия (в соответствии с НД на данное покрытие) на стальную пластину размером 150х150 мм.
Г.1.2 Количество параллельных образцов для заданных условий испытаний - не менее 5 шт.
Г.1.3 Образцы с дефектами покрытия к испытаниям не допускаются.
Г.1.4 Толщина и диэлектрическая сплошность образцов должны соответствовать требованиям НД на испытываемое покрытие.
Г.2 Приборы и оборудование
Тераометр типа Е 6-14, Е 6-13 А по ГОСТ 22261 с диапазоном измерений от 10 до 10 Ом.
Цилиндры 4 из стекла марки IV или полиэтилена. Размеры цилиндров: диаметр - 50-90 мм, высота - 70-100 мм. Цилиндры могут быть вырезаны из химических стаканов объемом 250 см марки НН по ГОСТ 23932 и ГОСТ 25336 или полиэтиленовых труб по ГОСТ 18599.
Крышки из стеклотекстолита по ГОСТ 12652.
Проволока платиновая диаметром 0,5-0,8 мм по ГОСТ 10821 или стержень графитовый.
Пробки резиновые № 14-17.
Цилиндр мерный 0-1000 см по ГОСТ 1770.
Колба круглая плоскодонная объемом 1000 см по ГОСТ 1770.
Соединительные провода по ГОСТ 6323 или аналогичные.
Толщиномер любого типа с погрешностью измерения:
± 50 мкм - для покрытий толщиной до 1 мм;
± 100 мкм - для покрытий толщиной более 1 мм.
Крепежные шпильки М 6 по ГОСТ 22042 и гайки к ним по ГОСТ 1759.1 или другие приспособления для скрепления ячеек.
Дефектоскоп искровой типа ДИ-74 по ТУ 25-06-1668 или другой с аналогичными параметрами.
Натрий хлористый квалификации ХЧ по ГОСТ 4233.
Спирт этиловый по ГОСТ 18300.
Вода дистиллированная по ГОСТ 6709.
Пластилин.
Г.3 Подготовка к испытанию
Г.3.1 К образцам с помощью пластилина (герметика) прикрепляют стеклянные или полиэтиленовые цилиндры. В прикрепленный к образцу цилиндр заливают 3 %-ный раствор NаСl до метки на уровне не менее 50 мм от поверхности покрытия. Цилиндр накрывают стеклотекстолитовой крышкой.
Г.3.2 Образцы покрытия 5, вырезанные из изоляции труб, закрепляют между стеклотекстолитовой крышкой 6 и цилиндром 4, который закрывают крышкой 3 с пробкой 1, и стягивают в четырех местах шпильками 2 (рисунок Г.1).
Г.3.3 Поверхность покрытия обезжиривают ватой, смоченной этиловым спиртом.
Г.4 Проведение испытаний
Г.4.1 Испытания проводят при температуре (20 ± 5) °С.
Г.4.2 Переходное сопротивление покрытия образца измеряют с помощью тераомметра при погружении платинового (графитового) электрода в раствор.
Г.4.3 Исходное переходное сопротивление покрытия измеряют после выдержки образцов в этих условиях в течение 3 сут. К дальнейшим испытаниям допускают только те образцы, переходное сопротивление которых не менее значений, указанных в таблицах 2 и 3 настоящего стандарта.
Г.4.4 При длительных испытаниях (100 сут) через каждые 25 сут измеряют переходное сопротивление покрытия. Если хотя бы в одном цилиндре сопротивление менее значения, регламентируемого требованиями данного стандарта, испытания прекращают.
Г.4.5 Не реже одного раза в 10 сут проверяют уровень раствора в цилиндрах и, доливая дистиллированную воду, доводят его до первоначального.
Г.5 Обработка результатов испытания
Г.5.1 Расчет среднего значения переходного сопротивления покрытия , Ом·м, на каждом образце проводят по формуле
(Г.1) |
где - номер образца;
- номер измерения;
- количество измерений на -м образце;
- сопротивление -го образца при -м измерении, Ом;
- площадь контакта образца с раствором, м, равная
(Г.2) |
где - внутренний диаметр цилиндра, м.
1 - пробки резиновые; 2 - крепежные шпильки с гайками; 3 и 6 - крышки из стеклотекстолита;
4 - цилиндры из стекла или полиэтилена; 5 - испытуемое покрытие
Рисунок Г.1 - Ячейка для определения переходного сопротивления изоляционного покрытия
Г.6 Оценка результатов испытаний
Покрытие считают выдержавшим испытание, если переходное сопротивление покрытий на всех пяти образцах не ниже значений, указанных в таблицах 2 и 3 настоящего стандарта.
Г.7 Оформление результатов испытаний
Результаты испытаний оформляют в виде протокола, в котором указывают:
- номер партии труб с покрытием;
- номер трубы с покрытием;
- результаты определения среднего значения переходного сопротивления покрытия;
- должность, фамилию и подпись лица, проводившего испытания;
- дату испытаний.
ПРИЛОЖЕНИЕ Д
(обязательное)
КОНТРОЛЬ СОСТОЯНИЯ
ИЗОЛЯЦИОННОГО ПОКРЫТИЯ ТРУБОПРОВОДОВ
Сущность метода состоит в катодной поляризации построенного и засыпанного участка трубопровода и определения качества изоляционного покрытия по смещению потенциала с омической составляющей (разности потенциалов "труба-земля") и силе поляризующего тока, вызывающей это смещение. Сила поляризующего тока определяется исходя из регламентированного таблицей 1 сопротивления изоляции данного типа, длины участка и диаметра трубопровода.
Д.1 Метод контроля состояния изоляционного покрытия на законченных
строительством участках трубопровода
Д.1.1 Средства контроля и вспомогательные устройства
Для определения сопротивления изоляции используют передвижную исследовательскую лабораторию электрохимической защиты (ПЭЛ.ЭХЗ), аппаратура и приборы которой должны быть электрически подключены по схеме (рисунок Д.1).
1 - трубопровод; 2 - неизолированный конец трубопровода; 3 - контакты; 4 - резистор;
5 - амперметр; 6 - источник постоянного тока; 7 - временное анодное заземление; 8 - медно-сульфатный электрод сравнения; 9 - вольтметр
Рисунок Д.1 - Схема проведения контроля состояния изоляционного покрытия законченных
строительством участков трубопроводов
Д.1.2 Подготовка к проведению контроля
Д.1.2.1 Контролируемый участок трубопровода не должен иметь контакта неизолированной поверхности трубы с грунтом, электрических и технологических перемычек с другими сооружениями, за исключением особых случаев, регламентированных НД.
Д.1.2.2 Измерения на контролируемом участке необходимо проводить в период, когда глубина промерзания грунта не превышает 0,5 м и когда расстояние между верхней границей глубинной мерзлоты и нижней образующей трубопровода составляет не менее 0,3 м.
Д.1.2.3 Временное анодное заземление из винтовых заземлителей, входящих в комплект лаборатории ПЭЛ.ЭХЗ, оборудуют на расстоянии 200-400 м от участка трубопровода в местах с возможно меньшим удельным сопротивлением грунта ПЭЛ.ЭХЗ (допускается использование заземлителей другого типа или соседнего подземного трубопровода в качестве заземления в соответствии с НД).
Д.1.3 Проведение контроля
Д.1.3.1 Измеряют потенциал трубопровода в конце участка с помощью вольтметра 9, электрически соединенного с трубопроводом контактом 3, относительно медно-сульфатного электрода сравнения 8.
При измерении источник постоянного тока 6 должен быть выключен.
Д.1.3.2 Включают источник постоянного тока 6 и устанавливают силу тока , А, вычисленную по формулам:
- для участков трубопроводов длиной, равной или более 4 км:
(Д.1) |
- для участков трубопроводов длиной менее 4 км:
(Д.2) |
где - длина участка трубопровода, м;
- смещение потенциала с омической составляющей (наложенная разность потенциалов "труба-земля") в конце участка, В, вычисляемое по формуле
(Д.3) |
где - нормированное смещение потенциала в конце участка, равное 0,4 В при 4 км и 0,7 В при < 4 км;
- требуемое сопротивление изоляции (Ом·м), определяемое по таблице 1 настоящего стандарта;
- сопротивление растеканию трубопровода (Ом·м), вычисляемое по формуле
(Д.4) |
где - диаметр трубопровода, м;
- глубина залегания трубопровода, м;
- продольное сопротивление трубопровода, Ом/м;
- среднее удельное электрическое сопротивление грунта, Ом·м, вычисляемое по формуле
(Д.5) |
где - длина -го участка с удельным электрическим сопротивлением (, Ом·м), м;
- количество участков с удельным электрическим сопротивлением ;
- характеристическое сопротивление трубопровода, Ом, вычисляемое по формуле
(Д.6) |
- постоянная распространения тока, 1/м, вычисляемая по формуле
(Д.7) |
Продольное сопротивление стального трубопровода , Ом/м, имеющего стандартные размеры в практике строительства магистральных трубопроводов, вычисляют по формуле
(Д.8) |
где - удельное сопротивление трубной стали, Ом·м;
- толщина стенки трубопровода, м;
Д.1.3.3 Через 3 ч после включения источника тока измеряют разность потенциалов "труба-земля" в конце участка.
Д.1.4 Обработка результатов контроля
Д.1.4.1 Смещение потенциала , В, вычисляют по формуле
(Д.9) |
где - измеренный потенциал (после включения источника постоянного тока), В;
- естественный потенциал (до включения источника постоянного тока), В.
Смещение потенциала должно быть не менее нормированного смещения .
Д.1.4.2 Сила поляризующего тока в зависимости от длины контролируемого участка может быть определена по номограммам, построенным для каждого типа изоляционного покрытия и стандартных диаметров. Допускается проведение коррекции смещения потенциала в случае отклонения реальной силы тока от нормированной.
Д.1.5 Оформление результатов контроля
Запись результатов измерений проводят по форме Д.1
Д.2 Метод контроля состояния изоляционного покрытия при эксплуатации
Д.2.1 Средства контроля и вспомогательные устройства
Аппаратура и приборы указаны в Д.1.1. В качестве источника постоянного тока используют катодные станции, действующие на трубопроводе, и их анодные заземления, в качестве амперметра - амперметр катодной станции. Подключение вольтметра к трубопроводу осуществляется в контрольно-измерительных пунктах.
Д.2.2 Порядок подготовки к контролю
Д.2.2.1 Контролируемый участок трубопровода должен быть оборудован контрольно-измерительными пунктами, которых должно быть не менее, чем требуется в разделе 6 (6.1.10, 6.1.11 и 6.1.12) настоящего стандарта.
Д.2 2.2 Не менее чем за сутки до проведения измерений выключают установки катодной защиты на участках трубопровода, примыкающих к контролируемому.
Д.2.3 Проведение испытаний
Д.2.3.1 Измеряют потенциал трубопровода при выключенных установках катодной защиты (естественную разность потенциалов "труба-земля") по всей длине контролируемого участка.
Д.2.3.2 Включают установку катодной защиты и не ранее чем через 3 ч поляризации измеряют силу тока установки и потенциал во всех контрольно-измерительных пунктах зоны действия этой катодной установки.
Д.2.3.3 После окончания испытаний все отключенные установки катодной защиты включают и устанавливают требуемые защитные токи.
Д.2.4 Обработка результатов испытаний
Д.2.4.1 Сопротивление изоляции , Ом·м, на контролируемом участке вычисляют по формуле
(Д.10) |
где - среднее значение смещения потенциала на длине зоны действия одной установки катодной защиты, В, которое вычисляют по формуле
(Д.11) |
где - длина, определяемая расстоянием между минимальными защитными значениями потенциалов по обе стороны от места установки катодной защиты, м;
- длина -го участка (половина расстояния между соседними с данным контрольно-измерительными пунктами), м, с потенциалом , В, рассчитываемым по формуле
(Д.12) |
где - потенциал на -м участке, измеренный после включения установки катодной защиты, В;
- естественная разность потенциалов на -м участке, В;
- количество контрольно-измерительных пунктов на контролируемом участке;
- плотность тока, А/м, вычисляемая по формуле
(Д.13) |
где - сила тока установки катодной защиты, А;
- диаметр трубопровода, м.
Д.2.4.2 Сопротивление изоляции трубопровода , Ом·м, вычисляют по формуле
(Д.14) |
где - число установок катодной защиты на участке трубопровода длиной , м.
Форма Д.1
Все графы обязательны к выполнению
________________________________________
наименование принимающей организации
АКТ
оценки состояния покрытия законченного строительством
(эксплуатируемого) участка трубопровода
Наименование трубопровода _______________________________________________________
Участок трубопровода (начало, км __________________, конец, км ______________________
протяженность, м _______________________ )
Диаметр трубы, м _________________, толщина стенки, мм ____________________________
Конструкция защитного покрытия __________________________________________________
Среднее удельное электрическое сопротивление грунта (), Ом _________________________
Требуемое сопротивление изоляции , Ом·м _____________________________________
Дата начала ________________________ и окончания __________________________ засыпки
Сопротивление растеканию трубопровода , Ом·м _________________________________
Продольное сопротивление , Ом/м _______________________________________________
Место подключения источника постоянного тока, км ___________________________________
Напряжение на выходе источника , В _____________________________________________
Время измерения |
Потенциал трубопровода, В, по медно-сульфатному электроду сравнения
|
||
|
Естественная разность потенциалов |
При выключенном источнике катодной поляризации
|
Смещение потенциала |
|
|
|
|
|
|
|
|
|
|
|
|
Состояние изоляционного покрытия участка трубопровода ______________________________
соответствует, не соответствует
требуемому значению
____________________________________ _____________ ____________________
должность лиц, проводивших определение личная подпись расшифровка подписи
___________________
дата
ПРИЛОЖЕНИЕ Е
(справочное)
МЕТОДИКА ОПРЕДЕЛЕНИЯ СОПРОТИВЛЕНИЯ ВДАВЛИВАНИЮ
Методика предназначена для проведения испытания полимерных материалов и покрытий на их основе по показателю сопротивления вдавливанию и позволяет установить их соответствие требованиям НД.
Сущность метода заключается в определении сопротивления прессованного материала или покрытия вдавливанию (пенитрации) при нагрузке 10 Н/мм.
Е.1 Образцы для испытаний
Образцами для испытания являются пластины материала, прессованного по ГОСТ 16336, размером 150х150 мм, толщиной не менее 2 мм или образцы покрытия (свидетели) по техническим условиям на эти материалы. Образцы должны иметь гладкую ровную поверхность без вздутий, сколов, трещин, раковин и других дефектов.
Е.2 Приборы и оборудование
Толщиномер изоляции.
Электрошкаф сушильный лабораторный типа СНОЛ 3,5.3,5.3,5/3,5-ИЗ или аналогичный с точностью регулирования температуры ± 2 °С (или водный термостат с терморегулятором).
Термометр метеорологический по ГОСТ 112.
Стержень металлический диаметром (1,8 ± 0,1) мм общей массой (250 ± 20) г.
Дополнительный груз массой (2250 ± 50) г.
Индикатор часового типа ИЧ1ОМД по НД с ценой деления 0,01.
Часы механические.
Металлическая подложка размером 150х150 мм (размеры жестко не нормируются) или образец покрытия на стальной подложке.
Линейка измерительная металлическая по ГОСТ 427.
Е.3 Подготовка к испытанию
Е.3.1 Образцы испытывают не ранее чем через 16 ч после прессования или изготовления покрытия.
Е.3.2 Устанавливают переключатель электрошкафа в положение, соответствующее температуре испытания (20 или 60 °С).
Е.3.3 Устанавливают образец на металлическую подложку и выдерживают при температуре (20 ± 2) °С или (60 ± 2) °С в течение не менее 60 мин.
Е.4 Проведение испытаний
Е.4.1 На испытуемый образец устанавливают металлический стержень и через 5 с на индикаторе устанавливают нулевое значение, после чего добавляют груз массой 2250 г.
Е.4.2 Через 24 ч снимают со шкалы индикатора показание глубины вдавливания с точностью до 0,01 мм.
Е.4.3 Испытания проводят в трех точках образца, расстояние между которыми должно быть не менее 30 мм.
Е.5 Обработка результатов испытаний
Е.5.1 Расчет значения сопротивления вдавливанию , мм, для каждого образца проводят по формуле
(Е.1) |
где - значение сопротивления вдавливанию для -й точки, мм;
- количество испытанных точек.
Е.5.2 Сопротивление вдавливанию оценивают как удовлетворительное, если
(Е.2) |
где - нормируемое значение сопротивления вдавливанию по таблице 2 настоящего стандарта.
Е.5.3 Если , испытания проводят на удвоенном количестве образцов. Результаты повторных испытаний считают окончательными.
Е.6 Оформление результатов испытаний
Результаты испытаний оформляют протоколом, в котором указывают:
- марку материала и номер партии;
- сопротивление вдавливанию, мм;
- фамилию, имя, отчество, подпись и должность лиц, проводивших испытания;
- дату проведения испытания.
ПРИЛОЖЕНИЕ Ж
(рекомендуемое)
ТРЕБОВАНИЯ К ЭЛЕКТРОХИМИЧЕСКОЙ ЗАЩИТЕ УЧАСТКОВ ТРУБОПРОВОДОВ
В УСЛОВИЯХ ВЫСОКОЙ КОРРОЗИОННОЙ ОПАСНОСТИ
Ж.1 К участкам высокой коррозионной опасности относят участки между установками электрохимической защиты, на которых произошли коррозионные отказы (разрывы, свищи) или обнаружены коррозионные язвы и трещины глубиной свыше 15 % толщины стенки трубы, а также участки, на которых скорость коррозии превышает 0,5 мм в год.
Ж.2 Границы участков трубопроводов высокой коррозионной опасности уточняются при детальном обследовании прилегающих участков методами внутритрубной дефектоскопии либо методами электрометрии с обязательным обследованием коррозионного состояния трубопроводов в шурфах, а также с учетом данных о распределении удельного электрического сопротивления вдоль трубопровода, химического состава и уровня грунтовых вод, поляризационных характеристик и температуры трубопровода, наличия и интенсивности блуждающих токов по НД.
Ж.3 Система электрохимической защиты должна иметь 100 %-ное резервирование в цепях преобразования и нагрузки с обеспечением автоматического перевода на резервные элементы при отказе основных.
Ж.4 Средства электрохимической защиты должны иметь повышенную надежность (не менее 30000 ч наработки на отказ).
Ж.5 При защите параллельных трубопроводов должны быть использованы регулируемые блоки совместной защиты или изолирующие соединения.
Ж.6 Система электрохимической защиты трубопроводов должна быть обеспечена коррозионным мониторингом, включающим контрольно-диагностические пункты, оборудованные сенсорными устройствами и датчиками контроля поляризационного потенциала, скорости коррозии (в том числе коррозии под изоляционным покрытием, защитного тока, интенсивности поглощения водорода, рН и др. согласно НД).
Ж.7 Средства электрохимической защиты должны быть оборудованы дистанционным контролем силы тока защиты, напряжения на выходе катодных станций и параметров коррозионного мониторинга. Вся телеметрическая информация должна быть обработана эксплуатационной службой с целью принятия мер по обеспечению эффективной защиты.
Ж.8 Отказ (перерыв) электрохимической защиты должен быть устранен в течение не более 24 ч.
ПРИЛОЖЕНИЕ И
(обязательное)
ТРЕБОВАНИЯ К КАТОДНЫМ СТАНЦИЯМ И ДРЕНАЖАМ
И.1 Средства электрохимической защиты должны обеспечивать катодную поляризацию сооружений в соответствии с требованиями настоящего стандарта независимо от условий применения.
И.2 Все элементы вновь разрабатываемых катодных станций и дренажей должны обеспечивать вероятность их безотказной работы на наработку 10000 ч не менее 0,9 (при доверительной вероятности 0,8).
И.3 Катодные станции, поляризованные автоматические и неавтоматические, а также усиленные дренажи должны иметь плавное или ступенчатое регулирование выходных параметров по напряжению или току от 10 до 100 % номинальных значений.
Пульсация тока на выходе катодных станций допускается не более 3 % на всех режимах.
И.4 Средства катодной и электродренажной защиты должны обеспечивать безопасность обслуживания по классу защиты 01 ГОСТ 12.2.007.0.
И.5 Уровень шума, создаваемый средствами катодной и электродренажной защиты, на всех частотах не должен превышать 60 дБ.
И.6 Катодные станции, автоматические поляризованные и усиленные дренажи должны иметь легко заменяемую защиту от атмосферных перенапряжений на сторонах питания и нагрузки; напряжение срабатывания защиты должно быть менее обратного напряжения применяемых вентилей, но не менее 250 В.
И.7 Уровень индустриальных радиопомех, создаваемых катодными станциями и дренажами по ГОСТ 16842, не должен превышать значений, предусмотренных ГОСТ 23511; уровень гармонических составляющих тока защиты при подключении к рельсовым сетям железных дорог не должен превышать норм ГОСТ 9.602.
И.8 По условиям эксплуатации окрашенные поверхности катодных станций и дренажей должны относиться к категории размещения группы условий эксплуатации У1 ГОСТ 9.104, иметь показатели внешнего вида не ниже IV класса по ГОСТ 9.032, окраска изделий должна быть светлых тонов.
И.9 Конструкция и схема катодных станций и дренажей должны обеспечивать возможность непрерывной работы без профилактического обслуживания и ремонта не менее 6 мес.
И.10 Технический осмотр, профилактическое обслуживание и текущий ремонт катодных станций и дренажей следует проводить не реже одного раза в месяц и дополнительно при изменении параметров электрохимической зашиты.
При этом проводят:
- осмотр всех доступных для внешнего наблюдения конструктивных элементов;
- проверку контактных соединений и устранение неисправностей;
- регистрацию показаний приборов, изменение и, при необходимости, регулировку потенциала на трубопроводе в точке дренажа;
- техническое обслуживание в соответствии с требованиями инструкции по эксплуатации завода-изготовителя.
Все виды неисправностей и отказов в работе следует фиксировать в полевом журнале с указанием времени их обнаружения, способа и времени устранения согласно НД.
И.11 Производственное оборудование, применяемое при проведении работ по комплексной защите сооружений от коррозии, должно соответствовать требованиям ГОСТ 12.2.003. Машины и механизмы, применяемые для профилактического обслуживания и текущего ремонта средств электрохимической защиты, а также при ремонтно-строительных работах, должны соответствовать требованиям ГОСТ 12.2.004.
И.12 Автоматические устройства катодной и дренажной защиты должны обеспечивать стабильность тока или потенциала с погрешностью, не превышающей 2,5 % заданного значения.
И.13 Катодные станции и дренажи должны соответствовать ГОСТ 15150 в части:
- климатического исполнения У категории размещения I для работы при температурах от 228 К (минус 45 °С) до 318 К (45 °С) в атмосфере типа П и при относительной влажности до 98 % при температуре 298 К (25 °С);
- климатического исполнения ХЛ категории размещения I для работы при температурах от 213 К (минус 60°С) до 313 К (40 °С) в атмосфере типа П и при относительной влажности до 98 % при температуре 298 К (25 °С).
И.14 Катодные станции и дренажи должны иметь степень защиты от воздействия окружающей среды и от соприкосновения с токоведущими частями не ниже IР34 ГОСТ 14254 (для автоматических поляризованных дренажей допускается степень защиты не менее IР23 при условии обеспечения степени защиты IР34 для блоков управления), допускать транспортирование по условию 8 и хранение по условиям 5, для южных районов - по условиям 6 ГОСТ 15150 и соответствовать требованиям безопасности ГОСТ 12.2.007.0 и "Правилам устройства электроустановок" [2].
И.15 Коэффициент полезного действия вновь разрабатываемых устройств катодной и дренажной защиты должен быть не менее 70 %.
И.16 Соединительные кабели в установках катодной и дренажной защиты должны иметь полимерную шланговую изоляцию токоведущих жил без металлической оболочки с пластмассовым шланговым покровом.
И.17 Максимальная температура обмоток трансформатора и дросселя не должна превышать 393 К (120 °С) при температуре эксплуатации в соответствии с И.13.
И.18 Входное сопротивление регулирующих устройств на выходах подключения электродов сравнения вновь разрабатываемых автоматических катодных станций и дренажей должно быть не менее 10 МОм.
И.19 Состав комплекта запасных частей и инструментов катодных станций и дренажей должен определяться, исходя из параметров надежности их элементов, и обеспечивать работу устройств не менее 50 % всего срока их службы.
И.20 Все новые средства электрохимической защиты должны быть подвергнуты эксплуатационным испытаниям (в течение не менее одного года) на соответствие требованиям настоящего стандарта независимой экспертной комиссией в тех почвенно-климатических условиях, для которых предназначены данные средства, по программам, согласованным с потребителем.
ПРИЛОЖЕНИЕ К
(информационное)
БИБЛИОГРАФИЯ
[1] Правила технической эксплуатации электроустановок потребителей и правила техники безопасности при эксплуатации электроустановок потребителей. - М.: Энергоатомиздат, 1986
[2] Правила устройства электроустановок (ПУЭ). - М.: Атомиздат, 1976
Ключевые слова: магистральный трубопровод, изоляция, ударная прочность изоляции, сопротивление изоляции, адгезия, эффективность защиты, электрохимическая защита, защитный потенциал, катодная защита, дренажная защита, протекторная защита, катодная установка, катодная станция (катодный преобразователь), поляризационный потенциал, потенциал с омической составляющей, удельное электрическое сопротивление грунта, контрольно-измерительный пост