РСН 75-90, часть 2
постоянная времени t должна оставаться неизменной;
измерения проводят не ранее, чем через 3 мин. после установки эталона;
допустимая погрешность измерения не более 2%.
Эталонирование аппаратуры следует проводить не реже одного раза в квартал, а также после замены радиодеталей измерительной схемы, которая может вызвать изменение чувствительности аппаратуры.
Гамма-гамма-каротаж (ГГК)
3.9. Гамма-гамма-каротаж (ГГК) применяется для измерения плотности грунтов в разрезе скважин, а также для уточнения литологического разреза, оценки общей трещиноватости и пустотности грунтов.
3.10. При проведении ГГК в основном используется метод рассеянного первичного гамма-излучения (метод альбедо). Глубинность исследования в прискважинном пространстве зависит от плотности пород, уменьшаясь с увеличением последней.
Радиус исследования в среднем (для грунтов плотностью 1500-1600 кг/м3 ) составляет около 10 см, уменьшаясь при возрастании плотности (до 2000 кг/м3 ) до 5 см. На показания ГГК существенное влияние оказывают неоднородности в прискважинной зоне: наличие и толщина глинистой корки, каверны, обсадные трубы и другие факторы.
3.11. Градуировку радиоизотопных плотномеров выполняют на аттестованных образцовых мерах плотности для рабочих условий измерений в диапазоне 800-2300 кг/м3 с номинальными значениями в следующих поддиапазонах:
800-1000; 1000-1300; 1300-1600; 1600-2000; 2000-2300 кг/м3 .
Рекомендуется использовать в качестве градировочных сред грунты с коэффициентом вариации: плотности - не более 2,5%, весовой влажности - не более 10%. Градуировку следует проводить в трубах-имитаторах, материал и типоразмеры которых соответствуют трубам при полевых измерениях.
3.12. До и после проведения ГГК в скважине измеряют величину контрольного показания. Допустимое отклонение контрольного показания от значения, полученного при эталонировании, не более 5%.
Нейтрон-нейтронный каротаж (ННК)
3.13. Нейтрон-нейтронный каротаж (ННК) в основном используется для измерения влажности грунтов (нейтронный метод измерения влажности), уточнения литологического состава разреза. Он основан на зависимости между водосодержанием грунта и плотности) потока замедленных нейтронов в процессе их рассеяния на ядрах атомов водорода.
3.14. ННК проводится метрологически аттестованной аппаратурой. Для построения градировочной зависимости нейтронного влагомера для рабочих условий измерений в диапазоне объемной влажности 0 - 100% должны быть изготовлены и метрологически аттестованы образцовые меры объемной влажности Wov с номинальными значениями в следующих поддиапазонах: 0-5, 5-20, 20-35, 35-60, 60-100, 100% (вода).
Две из указанных образцовых мер объемной влажности должны быть изготовлены с постоянным значением плотности сухого грунта r d , определенным с погрешностью не более 200 кг/м3 .
3.15. Рабочая градуировка нейтронных зондов может проводиться в реальных грунтах на основе сопоставления показаний приборов и определения влажности грунтов термостатно-весовым методом по ГОСТ 5180-75 в пункте измерения. В местах рабочей градуировки грунт должен быть однородным в пределах объема, с которого снимается информация.
4. МЕТОДИКА И ТЕХНИКА ПРОВЕДЕНИЯ
СЕЙСМО-АКУСТИЧЕСКОГО КАРОТАЖА
Сейсмокаротаж (СК )
4.1. Сейсмокаротаж (СК) проводится для определения скоростного разреза вблизи скважины, а также для стратиграфической привязки сейсмических границ и идентификации сейсмических волн. При сейсмокаротаже, как правило, изучаются первые вступления проходящих (прямых) волн.
4.2. В зависимости от условий производства сейсмокаротажных работ его выполняют в вариантах "прямого" или "обращенного" каротажа. При прямом сейсмокаротаже источник упругих колебаний располагают на поверхности земли или вблизи ее, а приемники - в скважине. При обращенном - наоборот, приемники располагают на поверхности земли, а источники возбуждения упругих волн - в скважине.
4.3. Сейсмокаротаж может проводиться либо с помощью одно-двухканальных портативных установок, либо с помощью многоканальных сейсмостанций, используемых при наземных сейсморазведочных работах. В связи с этим требования к контролю за работой аппаратуры и оборудования должны соответствовать РСН 66-87.
4.4. Перед проведением работ скважина должна быть промыта (проэталонирована) и промерена. Во избежание заклинивания зонда спуск и подъем следует проводить медленно. Необходимо избегать приближения скважинного сейсмоприемника к забою скважины на расстояние менее 1 м.
4.5. Глубина погружения зонда определяется по счетчику или меткам на кабеле с точностью ± 1 см. При применении многоканальных зондов необходимо обеспечивать идентичность каналов и представлять подтверждающие ее контрольные ленты, полученные перед началом работ и по их окончании, а также при замене зонда пли сейсмоприемника.
Акустический каротаж (АК)
4.6. Акустический каротаж (АК) применяется для детального расчленения разреза скважин по литологии, для обнаружения зон повышенной трещиноватости, разуплотнения и напряженного состояния пород.
Значения истинных скоростей упругих волн, измеренных при АК, исползуется для интерпретации результатов наземных и скважинных сейсмических наблюдений, для оценки инженерно-геологических характеристик грунтов и степени неоднородности массива.
Акустические наблюдения основаны на возбуждении и регистрации упругих колебаний в диапазоне частот 10-80 кГц. Примерная длина волн в скальных породах 5-30 см, в песчано-глинистых - 3-15 см; глубинность исследования стенок скважин колеблется от 10 до 57 см.
4.7. В качество излучателей и приемников в АК используются пьезопреобразователи, изучаются скорости продольных Vp и релеевских VR волн, реже поперечных волн Vs ; динамические характеристики являются вспомогательным материалом при выделении и корреляции волн, а также при геологической интерпретации данных A К.
4.8. Неотъемлемой частью АК являются измерения скорости упругих волн на образцах (кернах) пород из каротируемых скважин, что позволяет значительно повысить возможности АК, особенно при количественной оценке трещиноватости и пористости пород. Диапазон рабочих частот при этом может быть расширен до 200 кГц.
4.9. В инженерных изысканиях может использоваться:
непрерывный АК с автоматической регистрацией времен прихода упругих волн;
многоканальный АК с точечной регистрацией волновой картины;
АК с точечной регистрацией волновой картины, снятой в сухой скважине.
4.10. Аппаратура непрерывного каротажа позволяет регистрировать следующие основные параметры:
времена пробега продольной волны Т1 и T2 на базе И1 -П1 и И2 -П2 ;
амплитуду продольных волн А1 и A2 ; регистрируемую на приемнике при работе излучателя И1 и И2 ;
затухание колебаний продольной волны на базе И1 И2 ,
;
интервальное время D Т = T2 - Т1
4.11. В результате непрерывного АК получают диаграммы величин Т1 , Т2 , D Т, А1 , A2 , или части из них (обычно достаточно Т1 и D Т, А1 и . порядок работы с аппаратурой СПАК-2М и "Парус", методики получения диаграмм, контроля их качества и т.д. определяются соответствующими инструкциями.
4.12. Для проведения многоканального АК с точечной регистрацией используются ультразвуковые сейсмоскопы различных конструкций и скважинные зонды, изготовляемые силами геофизических организаций.
4.13. Наибольшее распространение получила установка многоканального каротажа Гидропроекта. Она состоит из ультразвукового сейсмоскопа, созданного на базе Р 5-5, снабженного фотоприставкой с аппаратом "Смена-8". На скважинном зонде через каждые 20 см размещены семь обратимых пьезопреобразователей с собственной частотой 70 кГц. Посредством экранированного кабеля РК-50-2 все семь ультразвуковых датчиков зонда непосредственно соединены со входом сейсмоскопа, где с помощью ручного переключателя они могут включаться как излучателями, так и приемниками ультразвука в любой комбинации. многоканальная запись получается путем поканального фотографирования волновых картин с экрана сейсмоскопа при одновременном перемещении фотопленки. Для облегчения последующей обработки полученные фотопленки ФЭД печатаются с увеличением 5:1 на фотоувеличителе П-10. Минимальный диаметр изучаемых скважин 58 мм.
4.14. Оптимальная стандартная методика наблюдений заключается в регистрации встречных годографов от двух крайних датчиков, каждый из которых подключается в качестве излучателя, а остальные последовательно в качестве приемников. При перемещении зонда с шагом 1 м по всей длине скважины получается непрерывная система встречных годографов. На каждой фотоосциллограмме, соответствующей одной стоянке зонда, размещаются 12 записей ультразвуковых колебаний и марки времени.
4.15. В сухих скважинах зонд прижимается к стенке скважины с помощью шарнирного или пневматического устройства.
Измерения при АК сухих скважин сводятся к регистрации волновых картин на электронно-лучевой трубке прибора путем фотографирования или зарисовки с обязательным фиксированием масштабных марок времени. Параллельно с этим необходим визуальный отсчет времени прихода первых вступлений и характерных фаз.
4.16. При каждом заданном положения зонда применяются встречные системы наблюдений по общепринятой схеме использования преобразователей зонда (датчиков). Зонд перемещается вдоль скважины с шагом, обеспечивающим перекрытие двух крайних точек. Положение зонда в скважине определяется по меткам на кабеле или специальном несущем тросе. АК выполняется при подъеме зонда.
4.17. В каротажном журнале регистрируется номер волнограммы, номер кадра, глубина погружения зонда, номера пьезопреобразователей, используемых в качестве излучателя и приемника (нумерация оговаривается заранее и должна быть зафиксирована в журнале), времена первых вступлений и характерных (коррелируемых) экстремумов; зарисовывается типичная волнограмма и обозначаются те экстремумы, времена которых записываются в журнале.
4.18. АК целесообразно применять в комплексе с наземной и шахтной сейсморазведкой, ВСП, сейсмическим и акустическим просвечиванием, электроразведкой.
Проведение комплексных, разночастотных и разнометодных исследований позволяет достаточно надежно охарактеризовать физико-механические свойства различных объемов массива горных пород, выявлять влияние масштабного фактора на данные разных методов.
4.19. При специальных исследованиях стенок скважин с целью выявления в грунтах трещин и элементов залегания пород целесообразно использовать комбинированный фотоакустический зонд.
5. МЕТОДИКА И ТЕХНИКА ПРОВЕДЕНИЯ ГИДРОКАРОТАЖНЫХ РАБОТ
Резистивиметрия (Рез)
5.1. Резистивиметрию скважин применяют для решения следующих основных задач:
оценки общей минерализации подземных вод;
выявления водоносных и в одопоглощающих горизонтов в скважине;
оценки фильтрационных свойств водоносных горизонтов.
5.2. В первую задачу входит определение минерализации бурового раствора сразу после бурении с промывкой технической водой, а также естественной минерализации подземных вод в пересчете на NaCl после интенсивной прокачки до полного осветления воды.
5.3. Наиболее благоприятными условиями для проведения метода являются:
достаточно большая мощность водоносного горизонта;
сравнительно небольшая минерализация подземного потока (не более 2 г/л);
относительно высокая скорость потока.
5.4. Резистивиметрию проводят скважинными резистивиметрами различной конструкции. Различают резистивиметры открытого и закрытого типа. К открытому типу относятся резистивиметры, измерительные элементы которых не закрыты металлическим или диэлектрическим экраном от окружающей среды, к закрытому - резистивиметры, измерительные элементы которых отделены экраном от среды, но открыты для доступа воды.
5.5. Коэффициент скважинного резистивиметра определяется по измерениям в жидкости с известным удельным электрическим сопротивлением при трех-четырех значениях силы тока и в нескольких растворах, отличающихся по сопротивлению.
5.6. Резистивиметрию проводят только эталонированным прибором. Различные по конструкции резистивиметры имеют свои специфические особенности при эталонировании. Эталонировка приборов проводится не реже одного раза в месяц, либо после ремонта.
5.7. Резистивиметрия проводится как в необсаженных скважинах, так и в скважинах, оборудованных фильтрами. Измерения при непрерывной записи проводятся, как правило, при движении снаряда сверху вниз. Скорость движения не более 500 м/ч. При точечной регистрации шаг измерений рекомендуется минимальный (0,1-0,2 м).
5.8. Определение мест притока (поглощения) воды в скважине, изучение фильтрационных свойств пород выполняются при нарушения естественного режима подземных вод (искусственное засоление воды в скважине, наливы или откачки).
5.9. Оценка фильтрационных свойств водоносных горизонтов с помощью резистивиметра основана на фиксации степени растворения солей искусственно созданного солевого раствора в скважине подземными водами во временном цикле.
Основное внимание следует обращать на равномерность засоления воды по стволу скважины (в зависимости от интенсивности потока) и на величину временного цикла. Измерения выполняются до полного растворения солей.
5.10. Первоначальная кривая резистивиметрии регистрируется для уточнения уровня воды в скважине, фактического забоя и определения естественной минерализации подземных вод.
5.11. Для контроля равномерности подсоления воды рекомендуется записать одну, в водонапорных комплексах - не менее двух, разделенных небольшим интервалом времени, кривых r b . При необходимости следует повторить подсолку воды для достижения необходимой концентрации соли в столбе воды.
5.12. Для определения мест притока (поглощения) измерения сводятся к проведению ряда замеров УЭС жидкости, заполняющей ствол скважины, при искусственном нарушении режима (откачки, наливы).
5.13. В случае самоизливающихся скважин, скважин с высокими пьезометрическими уровнями подземных вод в слабопроницаемых породах, при очень высоких напорах водоносных горизонтов и интенсивных переливах, при отсутствии источников забора воды проводятся послойные определения водопроводимости и коэффициента фильтрации при откачках с применением пакерных устройств.
5.14. В случае отсутствия интенсивных переливов между водоносными горизонтами применяются резистивиметрические измерения при наливах. В данном случае в одиночных скважинах возможно определение водопроводимости и коэффициента фильтрации. Метод основан на использовании зависимости между изменениями объемного расхода воды, проходящего по стволу одиночной скважины при наливе, и водопроводимостью пересеченных ею горных пород.
5.15. Разделение толщи на слои различной водопроводимости и оценка частных дебитов поглощения воды при наливе осуществляется по графику вертикальной скорости, при этом необходимо поддерживать стабильность дебита налива воды в скважину на протяжении всего цикла намерений с помощью регулирующего бака постоянного уровня.
5.16. После засоления начинается опытный налив в скважину пресной воды. Периодически, на протяжении всего времени налива ведутся замеры глубины до динамического уровня через 5-10 мин. В случае изменения дебита при обработке материалов необходимо привести рассчитываемые скорости движения раздела жидкости к одному расходу.
5.17. Одновременно с началом налива начинается периодическая запись резистивиметровых кривых, которые отчетливо отмечают движущуюся вниз границу раздела жидкостей различного сопротивления. Скорость подъема кабеля при замерах не должна превышать 600-1000 м/ч.
5.18. Замеры резистивиметром ведутся до тех пор, пока граница раздела жидкостей вплотную не подойдет к забою скважины, либо пока не остановится, достигнув кровли самого низшего водоупорного слоя. Одновременно прекращается налив.
5.19. В случае исследования скважин, вскрывших напорный горизонт, операции полностью повторяются при наливе с дебитом вдвое большим или меньшим первоначального, что необходимо для определения пьезометрических уровней водоносных горизонтов.
5.20. Продолжительность исследований скважин наливами в зависимости от геолого-технических условий и решаемых задач варьирует в довольно широких пределах и может регулироваться величиной дебита.
Расходометрия (РМ)
5.21. Расходометрия применяется с целью:
детального изучения разрезов скважин с выделением проницаемых и водоносных пород;
определения фильтрационных характеристик последних.
С помощью расходометрии могут бить получены сведения о водоносных пластах: глубине залегания, мощности, водопроводности, удельном дебите, пьезометрическом напоре, коэффициенте фильтрации и других параметрах.
5.22. Для расходометрических измерений наиболее удобны фонтанирующие скважины, не требующие искусственного создания в них динамического, режима. В нефонтанирующих скважинах расходометрия ведется при откачках, наливах (нагнетаниях) и в режиме естественного статического уровня подземных вод.
5.23. Для расходометрических наблюдений требования к подготовке скважин те же, что и для опытных откачек и нагнетаний.
После окончания бурения и посадки фильтра каждую скважину необходимо тщательно прокачать до полного осветления воды. Расходометрические исследования следует проводить в процессе или после опробования скважины откачками, которые способствуют восстановлению нормальной проницаемости стенок скважины.
5.24. При невозможности проведения расходометрии в скважинах с установленным эрлифтом необходимо применение микроэрлифта. В качестве последнего можно использовать портативную установку эрлифта с полиэтиленовыми шлангами и подачей воздуха от ресивера каротажной станции или легкого компрессора с электропитанием от генераторной группы.
5.25. При низком удельном дебите водоносных горизонтов и их относительно глубоком залегании применяют наливы вследствие их простоты и экономичности.
5.26. В подготовительный период подбирают материалы комплексного каротажа, сведения о геологическом разрезе, конструкции скважины, данные о статическом уровне подземных вод, фонтанировании, результатах пробных и опытных откачек. В обязательном порядке выполняется кавернометрия.
5.27. При наличии перетекания воды в скважине для раздельного определения их фильтрационных характеристик требуется оценивать пьезоуровень каждого пласта в отдельности. В этом случае следует применять расходомер с пакерной насадкой.
5.28. Расход осевого потока воды в скважинах рекомендуется измерять в два этапа с установкой расходомера в фиксированных точках. На первом этапе производят обзорные измерения с интервалом между точками установки расходомера через 2-5 м в скважине с открытым стволом глубиной 100-200 м и с интервалом 10 м в более глубоких скважинах. На втором этапе рекомендуется проводить детальные измерения с шагом от 2 до 0,25 м.
5.29. При использовании расходомера с пакерной насадкой по кавернограмме предварительно намечаются диаметры резиновых манжет пакера и границы интервалов по глубине, где их нужно иметь.
5.30. Расход осевого потока в точках наблюдений определяется по тарировочным графикам или соответствующим формулам [ 8] , исходя из скорости вращения крыльчатки, которая устанавливается по электромеханическому счетчику и секундомеру. В зависимости от скорости вращения время замеров может быть равно 0,5 2 мин.
5.31. При неустановившемся режиме фильтрации методика работ состоит в уменьшении циклов расходометрии. В этом случае необходимо, чтобы каждый график дебита по оси скважины синхронизировался с одним определенным дебитом и динамическим уровнем воды в опытной скважине. Послойные расчеты водопроводимости и коэффициента фильтрации пород следует вести по уравнениям установившейся фильтрации.
Кавернометрия (КМ)
5.32. Кавернометрия проводится с целью:
контроля состояния ствола скважины при бурении;
получения сведения о среднем диаметре скважины при обработке материалов, БКЭ, ННК, ГК, ГГК, РM и Рез;
уточнения литологической характеристики пород.
5.33. Для измерения диаметра скважины применяют скважинные приборы - каверномеры различного типа. Большинством каверномеров измерения выполняются при подъеме снаряда. Каверномер КФМ, предназначенный для измерения в скважинах малого диаметра, имеющий специальную систему мерных рычагов, позволяет в раскрытом (рабочем) положении перемещать прибор по стволу скважины в обоих направлениях. Каверномер КСУ имеет управляемую гидравлическую систему для четырехкратного раскрытия и закрытия мерных рычагов по команде, переданной с поверхности. Это позволяет выполнить повторные измерения диаметра на заданных интервалах без извлечения прибора из скважины.
5.34. Каверномеры перед изменениями эталонируют с помощью калибровочных колец. По результатом эталонировки строят график зависимости измеряемого напряжения от величины раскрытия мерных рычагов (диаметр кольца). Градуировку каверномера, рассчитанного на работу с трехжильным кабелем, рекомендуется проводить не реже одного раза в месяц.
5.35. Перед записью каверномером фиксируются:
положение нулевой линии или отклонение пишущего устройства при сжатых рычагах прибора;
отклонение пишущего устройства при нахождении прибора в градуировочном кольце или при полностью раскрытых рычагах прибора.
После записи показаний фиксируются данные в обсадной колонне на интервале не менее 10 м с отбивкой башмака колонны. Точность измерений диаметра скважины оценивается по записи в колонне. Погрешность измерений не должна превышать ± 1,5 см. Если она превышает допустимую, следует повторять градуировку.
5.36. Максимально допустимая скорость регистрации при непрерывной записи не более 500 м/ч. Рекомендуемый масштаб регистрации 1:5.
Термометрия
5.37. При инженерно-геологических гидрогеологических изысканиях измерения температуры в скважинах проводятся для решения различных задач.
в области распространения грунтов с отрицательной температурой эти задачи следующие:
определение температурного режима грунтов в естественных и нарушенных мерзлотно-грунтовых условиях;
определение температурного режима грунтов в процессе проведения специальных опытных работ.
В области распространения грунтов с положительной температурой:
определение температурного режима водонасыщенных и текучепластичных грунтов с целью создания "мерзлотных завес" для производства подземных строительных работ.
При проведении гидрогеологических изысканий:
определение в процессе стабильной откачки местоположения водоносных горизонтов;
определение температурного режима воды по стволу скважины при стабильном режиме налива с целью определения фильтрационных характеристик грунтов;
определение температурных свойств слоев разреза по градиент-термограммам;
определение температуры воды по стволу скважины при оценке минерализации подземных вод по данным резистивиметрии.
5.38. Для измерения температуры в скважинах применяют термометр сопротивления, максимальный ртутный термометр и глубинный самопишущий термометр. Основным является термометр сопротивления, рассчитанный на работу с трехжильным или одножильным кабелем.
5.39. Измерения температуры в скважинах проводятся при двух тепловых режимах: неустановившемся и установившемся.
Измерения при установившемся режиме проводятся для решения различных задач, в том числе выяснения температурного режима работы приборов, учета температуры при интерпретации данных каротажа, определения мест притока воды (поглощения) в скважины и т.д.
Измеренная при неустановившемся тепловом режиме температура значительно отличается от естественной температуры пород на соответствующей глубине, разница тем больше, чем меньше времени прошло от момента прекращения циркуляции.
5.40. Измерения температуры при установившемся режиме проводят для определения естественной температуры пород. Измерения температуры в этом случае производят после длительного (больше 10 сут.) пребывания скважины в покое. Более точное значение времени пребывания скважины в покое устанавливается для данного типа скважин и района по опытным замерам в различное время; допустимым считают такое время нахождения скважины в покое, после которого температура пород в любой точке скважины изменилась не более чем на 1° С в течение значительного (не менее суток) интервала времени.
5.41. Термометр сопротивления должен удовлетворять следующим требованиям:
обеспечивать требуемую техническими условиями точность измерении в диапазоне измерения температур, для которого прибор предназначен;
быстро воспринимать температуру окружающей среды (обладать небольшой постоянной времени);
погрешность в результате нагрева чувствительного элемента проходящим через него током не должна быть большой.
5.42. Для контроля перед спуском в скважину следует измерять температуру среды одновременно скважинным и ртутным термометрами. Разница в показаниях не должна превышать 0,5°С.
5.43. Термограмму рекомендуется регистрировать при спуске термометра. При подъеме допускается проводить лишь контрольные измерения.
Увеличению температуры должно соответствовать смещение кривой вправо. Допустимая скорость перемещения термометра при непрерывной регистрации зависит от постоянной времени и может изменяться от 300 до 1000 м/ч. Термограмму следует регистрировать при постоянной скорости перемещения, термометра по скважине во избежание искажении в результате ухода показаний, связанного с тепловой инерцией прибора.
5.44. Для построения температурной шкалы термограммы проводят градуировку термометра. Она должна проводиться не реже одного раза в три месяца и после ремонта.
6. ОФОРМЛЕНИЕ И КОНТРОЛЬ КАЧЕСТВА МАТЕРИАЛОВ КАРОТАЖА
Документация и предварительная обработка материалов
6.1. Первичными полевыми документами каротажных работ являются:
при работе с каротажными станциями - градировочные (эталонировочные) диаграммные записи, рабочие каротажные диаграммы;
при работе с полевой переносной аппаратурой - журналы полевых наблюдений, градуировочные графики.
6.2. Подлинники каротажных диаграмм должны иметь стандартный штамп, который содержит следующие сведения:
наименование изыскательской (проектно-изыскательской) организации, номер геофизической партии (отряда);
название участка работ и номер скважины;
вид каротажного исследования;
данные о скважине - глубина забоя, м; диаметр, мм; диаметр колонны, мм; глубина башмака, м;
данные о наземном и скважинном оборудовании: тип и номер каротажной станции, переносного прибора, зонда, тип кабеля;
цена первой метки, м;
скорость и масштаб регистрации кривых и масштаб глубин;
дата измерений и подпись оператора;
Для кривой потенциала ПС (ГПС) ВП масштаб изображают отрезком длиной 2 см, против которого указывается число соответствующих этому отрезку милливольт и направление возрастания (+) и убывания (-) потенциала (градиента). Глубины отличаются вблизи зафиксированных на ленте меток и соответствуют целому числу десятков метров.
На подлинниках кривых резистиметрии должны быть указанны дополнительно:
режим исследований (наливы, откачки, естественный режим и т.д.);
время записи;
масштаб записи.
На термограммах:
величина контрольного шунта или стандарт-сигнала, постоянная прибора С и температура То , при которой измеряемый сигнал равен 0;
постоянная времени;
время спокойного стояния скважины.
Данные расходометрии оформляются в виде полевого журнала где должны быть сведения:
участок и номер скважины;
режим работы;
тип и номер прибора;
дата измерений;
уровень раствора;
тарировочный коэффициент.
На кавернограммах обязательными являются данные:
тип и номер прибора;
постоянная кавернометра.
6.3. Hулевую линию каротажной кривой (диаграммы) следует наносить;
для электрокаротажа - по отметкам нуля, записях в колонне;
для радиоактивного каротажа - по записям нулевого положения регистратора.
6.4. На диаграммах радиоактивного каротажа, термометрии, кавернометрии со смещением кривых при помощи компенсатора фона (компенсатора поляризации) следует отмечать величину смещения и для ка ждого участка переноса кривой указывать ее масштаб. Величина переноса кривой (ПС и температурной) должна быть четко обозначена на подлиннике.
6.5. Все надписи и кривые не должны иметь подчисток и не оговоренных исправлений. Нечеткие кривые, а также кривые записанные карандашом, обводят тушью.
6.6. При работе с полевой переносной аппаратурой следует вести полевой журнал для записи наблюдений в виде цифровых отсчетов. В полевом журнале указывают те же сведения, что и в штампе каротажной диаграммы (п. 6.2), за исключение скорости и масштаба регистрации. При проведении точечной регистрации необходимо в поле на миллиметровке строить график изменения показаний в тех же масштабах, что и при автоматической записи.
6.7. Качество полевых измерений проверяют:
по наличию соответствующих градуировочных записей или эталонировочных графиков;
по сходимости повторных (контрольных) измерений, выполненных в наиболее дифференцированной части разреза, с основным замером;
путем сопоставления диаграмм (отсчетов) различных каротажных методов в интервале залегания слоев с известными каротажными значениями.
Наилучшим способом контроля кривых КС является сопоставление значений кажущихся удельных сопротивлений. полученных различными зондами против отдельных слоев. Такое сопоставление рекомендуется делать путем построения кривой зависимости КС от длины зонда. Отклонение отдельных точек от кривой и расчетного значения указывает на ошибочность измерений. Для кривых радиоактивного каротажа величина статических флуктуаций определяется по записям при неподвижном зонде. Погрешность измерений при радиоактивном каротаже определяется по измерениям в эталонной скважине, имеющей практически однородное геологическое строение и хорошо изученной с инженерно-геологической точки зрения.
6.8. При одинаковых условиях измерений абсолютная погрешность принимается равной половине величины расхождения между ocновным и повторным замерами. Относительная погрешность определяется как отношение абсолютной погрешности к среднему значению измеряемого параметра по двум замерам.
6.9. Скорость регистрации кривых при автоматической (полуавтоматической) записи определяется сложностью разреза, детальностью исследований и техническими возможностями регистрирующей аппаратуры. Скорость регистрации для конкретных условий не должна превышать максимально допустимую, устанавливаемую посредством опытных измерений в ряде скважин района (не менее трех скважин). За максимально допустимую принимается скорость, когда расхождения в амплитудах аномалий на кривых, зарегистрированных с этой и в два раза меньшей скоростью против слоев с минимальной мощностью, подлежащих изучению, не превышает допустимых для каждого метода погрешностей измерения.
6.10. При точечной регистрации рекомендуется три интервала записи: через 1, 0.5 и 0,2 м.
При рекогносцировочных работах следует проводить измерения с интервалом 1 м, при детальных - 0,2 м. Оптимальный интервал измерения - 0,5 м.
Точечная регистрация с шагом детальнее 0,2 м не рекомендуется. При необходимости проведения работ с более детальным шагом следует переходить не непрерывную регистрацию.